.
1) Using only Subsets (22 of them):***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = SFin
*** Download from:
https://github.com/denis-berthier/CSP-Rules-V2.1***********************************************************************************************
- Code: Select all
1345678 3478 14567 14569 12369 123469 145789 12458 12579
14567 47 2 8 169 1469 14579 145 3
13458 9 145 145 7 1234 1458 6 125
1234 6 149 149 5 12489 1389 7 19
1257 27 8 3 1269 12679 1569 15 4
13457 347 14579 14679 1689 146789 2 1358 1569
467 1 3 2 69 679 4567 45 8
2678 5 67 167 4 13678 1367 9 1267
9 2478 467 167 1368 5 13467 1234 1267
233 candidates, 1607 csp-links and 1607 links. Density = 5.95%
hidden-pairs-in-a-block: b8{n3 n8}{r8c6 r9c5} ==> r9c5 ≠ 6, r9c5 ≠ 1, r8c6 ≠ 7, r8c6 ≠ 6, r8c6 ≠ 1
whip[1]: b8n1{r9c4 .} ==> r1c4 ≠ 1, r3c4 ≠ 1, r4c4 ≠ 1, r6c4 ≠ 1
hidden-pairs-in-a-block: b7{n2 n8}{r8c1 r9c2} ==> r9c2 ≠ 7, r9c2 ≠ 4, r8c1 ≠ 7, r8c1 ≠ 6
hidden-pairs-in-a-block: b6{n3 n8}{r4c7 r6c8} ==> r6c8 ≠ 5, r6c8 ≠ 1, r4c7 ≠ 9, r4c7 ≠ 1
naked-triplets-in-a-row: r4{c3 c4 c9}{n1 n4 n9} ==> r4c6 ≠ 9, r4c6 ≠ 4, r4c6 ≠ 1, r4c1 ≠ 4, r4c1 ≠ 1
naked-triplets-in-a-column: c8{r2 r5 r7}{n4 n1 n5} ==> r9c8 ≠ 4, r9c8 ≠ 1, r1c8 ≠ 5, r1c8 ≠ 4, r1c8 ≠ 1
naked-triplets-in-a-row: r9{c2 c5 c8}{n2 n8 n3} ==> r9c9 ≠ 2, r9c7 ≠ 3
swordfish-in-columns: n2{c2 c5 c8}{r9 r5 r1} ==> r5c6 ≠ 2, r5c1 ≠ 2, r1c9 ≠ 2, r1c6 ≠ 2
swordfish-in-columns: n9{c3 c4 c9}{r6 r4 r1} ==> r6c6 ≠ 9, r6c5 ≠ 9, r1c7 ≠ 9, r1c6 ≠ 9, r1c5 ≠ 9
swordfish-in-columns: n5{c3 c4 c9}{r6 r3 r1} ==> r6c1 ≠ 5, r3c7 ≠ 5, r3c1 ≠ 5, r1c7 ≠ 5, r1c1 ≠ 5
swordfish-in-columns: n3{c2 c5 c8}{r6 r1 r9} ==> r6c1 ≠ 3, r1c6 ≠ 3, r1c1 ≠ 3
hidden-pairs-in-a-block: b2{n2 n3}{r1c5 r3c6} ==> r3c6 ≠ 4, r3c6 ≠ 1, r1c5 ≠ 6, r1c5 ≠ 1
finned-x-wing-in-columns: n1{c8 c5}{r2 r5} ==> r5c6 ≠ 1
naked-triplets-in-a-column: c6{r3 r4 r8}{n3 n2 n8} ==> r6c6 ≠ 8
swordfish-in-rows: n8{r3 r4 r8}{c1 c7 c6} ==> r1c7 ≠ 8, r1c1 ≠ 8
hidden-pairs-in-a-block: b1{n3 n8}{r1c2 r3c1} ==> r3c1 ≠ 4, r3c1 ≠ 1, r1c2 ≠ 7, r1c2 ≠ 4
finned-x-wing-in-rows: n1{r4 r3}{c3 c9} ==> r1c9 ≠ 1
swordfish-in-rows: n4{r3 r4 r9}{c7 c4 c3} ==> r7c7 ≠ 4, r6c4 ≠ 4, r6c3 ≠ 4, r2c7 ≠ 4, r1c7 ≠ 4, r1c4 ≠ 4, r1c3 ≠ 4
jellyfish-in-columns: n1{c1 c6 c5 c8}{r5 r1 r6 r2} ==> r6c9 ≠ 1, r6c3 ≠ 1, r5c7 ≠ 1, r2c7 ≠ 1, r1c7 ≠ 1, r1c3 ≠ 1
naked-single ==> r1c7 = 7
naked-pairs-in-a-block: b3{r1c9 r2c7}{n5 n9} ==> r3c9 ≠ 5, r2c8 ≠ 5
hidden-pairs-in-a-row: r1{n1 n4}{c1 c6} ==> r1c6 ≠ 6, r1c1 ≠ 6
finned-x-wing-in-rows: n7{r7 r5}{c6 c1} ==> r6c1 ≠ 7
naked-pairs-in-a-column: c1{r1 r6}{n1 n4} ==> r7c1 ≠ 4, r5c1 ≠ 1, r2c1 ≠ 4, r2c1 ≠ 1
stte
2) 1-step solution?There is no BRT- or W1- anti-backdoor, therefore no real 1-elimination solution.
In particular, Cenoman's elimination still requires several Subsets to be applied before the end:
naked-pairs-in-a-column: c8{r2 r5}{n1 n5} ==> r9c8 ≠ 1, r7c8 ≠ 5, r6c8 ≠ 5, r6c8 ≠ 1, r1c8 ≠ 5, r1c8 ≠ 1
naked-single ==> r7c8 = 4
hidden-single-in-a-block ==> r7c7 = 5
naked-pairs-in-a-block: b7{r7c1 r8c3}{n6 n7} ==> r9c3 ≠ 7, r9c3 ≠ 6, r9c2 ≠ 7, r8c1 ≠ 7, r8c1 ≠ 6
naked-single ==> r9c3 = 4
naked-pairs-in-a-row: r4{c3 c9}{n1 n9} ==> r4c7 ≠ 9, r4c7 ≠ 1, r4c6 ≠ 9, r4c6 ≠ 1, r4c4 ≠ 9, r4c4 ≠ 1, r4c1 ≠ 1
naked-single ==> r4c4 = 4
naked-pairs-in-a-row: r3{c3 c4}{n1 n5} ==> r3c9 ≠ 5, r3c9 ≠ 1, r3c7 ≠ 1, r3c6 ≠ 1, r3c1 ≠ 5, r3c1 ≠ 1
stte
Of course, it all depends on what you count as no-step. But if you count Subsets as no-step, then the first solution is 0-step.
3) 2-step solution?As there is a solution in S4, it is natural to restrict the search for 2-step solutions to W4.
But in W4, there are only 5 W1-anti-backdoor-pairs:
- Code: Select all
n4r9c2, n5r6c9 n4r9c2, n9r6c3 n4r9c2, n5r5c1 n4r9c2, n9r4c9 n1r5c8, n4r9c2
and none of them gives rise to a 2-step solution in W4.
4) [corrected:] 2-steps using nukes, i.e. Forcing-T&EFORCING-T&E(BRT) applied to bivalue candidates n8r1c8 and n8r6c8 :
===> 0 values decided in both cases:
===> 51 candidates eliminated in both cases: n3r1c1 n8r1c1 n4r1c2 n7r1c2 n1r1c5 n6r1c5 n9r1c5 n2r1c6 n3r1c6 n8r1c7 n1r1c8 n4r1c8 n5r1c8 n2r1c9 n1r3c1 n4r3c1 n5r3c1 n1r3c6 n4r3c6 n1r3c9 n1r4c1 n2r4c1 n1r4c6 n4r4c6 n9r4c6 n1r4c7 n9r4c7 n2r5c1 n2r5c6 n3r6c1 n6r6c5 n9r6c5 n8r6c6 n1r6c8 n5r6c8 n6r8c1 n7r8c1 n1r8c6 n6r8c6 n7r8c6 n1r8c7 n6r8c7 n7r8c7 n4r9c2 n7r9c2 n1r9c5 n6r9c5 n3r9c7 n1r9c8 n4r9c8 n2r9c9
18 singles
FORCING-T&E(BRT) applied to bivalue candidates n1r4c9 and n9r4c9 :
===> 12 values decided in both cases: n4r7c8 n5r7c7 n5r3c4 n4r4c4 n6r5c7 n9r1c4 n6r8c9 n1r8c4 n7r2c2 n9r2c7 n4r6c2 n4r2c6
===> 76 candidates eliminated in both cases: n5r1c1 n6r1c1 n7r1c1 n1r1c3 n4r1c3 n7r1c3 n1r1c4 n4r1c4 n5r1c4 n6r1c4 n4r1c6 n9r1c6 n1r1c7 n5r1c7 n9r1c7 n1r1c9 n9r1c9 n1r2c1 n4r2c1 n7r2c1 n4r2c2 n9r2c5 n1r2c6 n6r2c6 n9r2c6 n1r2c7 n4r2c7 n5r2c7 n7r2c7 n4r2c8 n5r3c3 n1r3c4 n4r3c4 n5r3c7 n4r4c3 n1r4c4 n9r4c4 n1r5c1 n6r5c5 n1r5c6 n6r5c6 n1r5c7 n5r5c7 n9r5c7 n4r6c1 n5r6c1 n7r6c1 n7r6c2 n1r6c3 n4r6c3 n7r6c3 n1r6c4 n4r6c4 n9r6c4 n4r6c6 n7r6c6 n9r6c6 n1r6c9 n6r6c9 n4r7c1 n6r7c6 n4r7c7 n6r7c7 n7r7c7 n5r7c8 n6r8c3 n6r8c4 n7r8c4 n1r8c9 n7r8c9 n7r9c3 n1r9c4 n4r9c7 n6r9c7 n7r9c7 n6r9c9
stte
5) [added:] 1-step using super-nukes, i.e. Forcing[3]-T&EFORCING[3]-T&E(W1) applied to trivalue candidates n5r1c9, n5r3c9 and n5r6c9 :
===> 4 values decided in the three cases: n4r7c8 n4r4c4 n5r7c7 n6r5c7
===> 116 candidates eliminated in the three cases: n3r1c1 n5r1c1 n6r1c1 n8r1c1 n4r1c2 n7r1c2 n1r1c3 n4r1c3 n7r1c3 n1r1c4 n4r1c4 n6r1c4 n1r1c5 n6r1c5 n9r1c5 n2r1c6 n3r1c6 n9r1c6 n1r1c7 n4r1c7 n5r1c7 n8r1c7 n9r1c7 n1r1c8 n4r1c8 n5r1c8 n1r1c9 n2r1c9 n1r2c1 n4r2c1 n7r2c1 n4r2c2 n9r2c5 n1r2c6 n9r2c6 n1r2c7 n5r2c7 n7r2c7 n4r2c8 n1r3c1 n4r3c1 n5r3c1 n5r3c3 n4r3c4 n1r3c6 n4r3c6 n1r3c7 n5r3c7 n1r3c9 n1r4c1 n4r4c1 n4r4c3 n1r4c4 n9r4c4 n1r4c6 n4r4c6 n9r4c6 n1r4c7 n9r4c7 n2r5c1 n6r5c5 n1r5c6 n2r5c6 n6r5c6 n1r5c7 n5r5c7 n9r5c7 n3r6c1 n5r6c1 n7r6c1 n7r6c2 n1r6c3 n4r6c3 n7r6c3 n1r6c4 n4r6c4 n9r6c4 n1r6c5 n9r6c5 n4r6c6 n7r6c6 n8r6c6 n9r6c6 n1r6c8 n5r6c8 n1r6c9 n6r6c9 n4r7c1 n6r7c6 n4r7c7 n6r7c7 n7r7c7 n5r7c8 n6r8c1 n7r8c1 n6r8c4 n1r8c6 n6r8c6 n7r8c6 n6r8c7 n7r8c7 n2r8c9 n7r8c9 n2r9c2 n7r9c2 n6r9c3 n7r9c3 n7r9c4 n6r9c5 n8r9c5 n3r9c7 n4r9c7 n6r9c7 n1r9c8 n4r9c8 n1r9c9
stte