.
Subsets, even with finned Fish, are not quite enough; but we get a good dose of them:
(solve "...........12....3.2..4..5..5..6..4...73....1.....47...6..5..8...31....7...9.....")
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = S
*** Using CLIPS 6.32-r779
***********************************************************************************************
hidden-single-in-a-column ==> r7c4 = 4
246 candidates, 1820 csp-links and 1820 links. Density = 6.04%
whip[1]: c4n6{r3 .} ==> r3c6 ≠ 6, r1c6 ≠ 6, r2c6 ≠ 6
naked-pairs-in-a-row: r7{c3 c9}{n2 n9} ==> r7c7 ≠ 9, r7c7 ≠ 2, r7c6 ≠ 2, r7c1 ≠ 9, r7c1 ≠ 2
hidden-pairs-in-a-column: c3{n4 n5}{r1 r9} ==> r9c3 ≠ 8, r9c3 ≠ 2, r1c3 ≠ 9, r1c3 ≠ 8, r1c3 ≠ 6
x-wing-in-columns: n4{c3 c9}{r1 r9} ==> r9c7 ≠ 4, r9c2 ≠ 4, r9c1 ≠ 4, r1c7 ≠ 4, r1c2 ≠ 4, r1c1 ≠ 4
swordfish-in-columns: n5{c3 c4 c9}{r9 r1 r6} ==> r9c7 ≠ 5, r9c1 ≠ 5, r1c6 ≠ 5, r1c1 ≠ 5
hidden-pairs-in-a-row: r9{n4 n5}{c3 c9} ==> r9c9 ≠ 6, r9c9 ≠ 2
hidden-pairs-in-a-block: b9{n4 n5}{r8c7 r9c9} ==> r8c7 ≠ 9, r8c7 ≠ 6, r8c7 ≠ 2
swordfish-in-columns: n6{c3 c4 c9}{r6 r3 r1} ==> r6c8 ≠ 6, r6c1 ≠ 6, r3c7 ≠ 6, r3c1 ≠ 6, r1c8 ≠ 6, r1c7 ≠ 6, r1c1 ≠ 6
hidden-triplets-in-a-column: c1{n4 n5 n6}{r5 r8 r2} ==> r8c1 ≠ 9, r8c1 ≠ 8, r8c1 ≠ 2, r5c1 ≠ 9, r5c1 ≠ 8, r5c1 ≠ 2, r2c1 ≠ 9, r2c1 ≠ 8, r2c1 ≠ 7
naked-pairs-in-a-block: b7{r8c1 r9c3}{n4 n5} ==> r8c2 ≠ 4
hidden-triplets-in-a-row: r1{n4 n5 n6}{c9 c3 c4} ==> r1c9 ≠ 9, r1c9 ≠ 8, r1c9 ≠ 2, r1c4 ≠ 8, r1c4 ≠ 7
swordfish-in-columns: n8{c3 c4 c9}{r3 r4 r6} ==> r6c5 ≠ 8, r6c2 ≠ 8, r6c1 ≠ 8, r4c7 ≠ 8, r4c6 ≠ 8, r4c1 ≠ 8, r3c7 ≠ 8, r3c6 ≠ 8, r3c1 ≠ 8
hidden-triplets-in-a-row: r6{n5 n6 n8}{c4 c9 c3} ==> r6c9 ≠ 9, r6c9 ≠ 2, r6c3 ≠ 9, r6c3 ≠ 2
x-wing-in-columns: n2{c3 c9}{r4 r7} ==> r4c7 ≠ 2, r4c6 ≠ 2, r4c1 ≠ 2
naked-triplets-in-a-column: c7{r3 r4 r7}{n1 n9 n3} ==> r9c7 ≠ 3, r9c7 ≠ 1, r5c7 ≠ 9, r2c7 ≠ 9, r1c7 ≠ 9, r1c7 ≠ 1
hidden-pairs-in-a-block: b9{n1 n3}{r7c7 r9c8} ==> r9c8 ≠ 6, r9c8 ≠ 2
swordfish-in-columns: n9{c3 c7 c9}{r7 r4 r3} ==> r4c6 ≠ 9, r4c1 ≠ 9, r3c6 ≠ 9, r3c1 ≠ 9
naked-triplets-in-a-column: c1{r3 r4 r7}{n7 n3 n1} ==> r9c1 ≠ 7, r9c1 ≠ 1, r6c1 ≠ 3, r6c1 ≠ 1, r1c1 ≠ 7, r1c1 ≠ 3
hidden-pairs-in-a-block: b4{n1 n3}{r4c1 r6c2} ==> r6c2 ≠ 9
hidden-pairs-in-a-block: b7{n1 n7}{r7c1 r9c2} ==> r9c2 ≠ 8
naked-triplets-in-a-column: c6{r3 r4 r7}{n3 n1 n7} ==> r9c6 ≠ 7, r9c6 ≠ 3, r2c6 ≠ 7, r1c6 ≠ 7, r1c6 ≠ 3, r1c6 ≠ 1
naked-pairs-in-a-row: r1{c1 c6}{n8 n9} ==> r1c8 ≠ 9, r1c7 ≠ 8, r1c5 ≠ 9, r1c5 ≠ 8, r1c2 ≠ 9, r1c2 ≠ 8
singles ==> r1c7 = 2, r9c7 = 6, r8c6 = 6
naked-pairs-in-a-block: b8{r8c5 r9c6}{n2 n8} ==> r9c5 ≠ 8, r9c5 ≠ 2
naked-pairs-in-a-block: b1{r1c2 r3c1}{n3 n7} ==> r2c2 ≠ 7
hidden-pairs-in-a-block: b2{n1 n3}{r1c5 r3c6} ==> r3c6 ≠ 7, r1c5 ≠ 7
x-wing-in-rows: n8{r1 r9}{c1 c6} ==> r5c6 ≠ 8, r2c6 ≠ 8
PUZZLE 0 NOT SOLVED. 56 VALUES MISSING.
- Code: Select all
FINAL RESOLUTION STATE:
89 37 45 56 13 89 2 17 46
456 489 1 2 789 59 48 679 3
37 2 689 678 4 13 19 5 689
13 5 289 78 6 17 39 4 289
46 489 7 3 289 259 58 269 1
29 13 68 58 129 4 7 239 568
17 6 29 4 5 37 13 8 29
45 89 3 1 28 6 45 29 7
28 17 45 9 37 28 6 13 45
Starting from this PM, a few more Subsets and 2 bivalue chains finish the puzzle:
- Code: Select all
(solve-sukaku-grid
89 37 45 56 13 89 2 17 46
456 489 1 2 789 59 48 679 3
37 2 689 678 4 13 19 5 689
13 5 289 78 6 17 39 4 289
46 489 7 3 289 259 58 269 1
29 13 68 58 129 4 7 239 568
17 6 29 4 5 37 13 8 29
45 89 3 1 28 6 45 29 7
28 17 45 9 37 28 6 13 45
)
biv-chain[3]: r1c1{n9 n8} - b7n8{r9c1 r8c2} - b7n9{r8c2 r7c3} ==> r3c3 ≠ 9
whip[1]: r3n9{c9 .} ==> r2c8 ≠ 9
naked-pairs-in-a-column: c3{r3 r6}{n6 n8} ==> r4c3 ≠ 8
naked-pairs-in-a-block: b4{r4c3 r6c1}{n2 n9} ==> r5c2 ≠ 9
biv-chain[3]: r1n6{c4 c9} - r2c8{n6 n7} - b2n7{r2c5 r3c4} ==> r3c4 ≠ 6
singles ==> r1c4 = 6, r1c9 = 4, r1c3 = 5, r9c3 = 4, r8c1 = 5, r8c7 = 4, r2c7 = 8, r5c7 = 5, r9c9 = 5, r6c4 = 5, r2c6 = 5
hidden-pairs-in-a-column: c5{n2 n8}{r5 r8} ==> r5c5 ≠ 9
finned-x-wing-in-columns: n9{c1 c5}{r6 r1} ==> r1c6 ≠ 9
stte