***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = BC+SFin
*** Using CLIPS 6.32-r773
***********************************************************************************************
265 candidates, 2140 csp-links and 2140 links. Density = 6.12%
naked-pairs-in-a-column: c8{r2 r5}{n1 n2} ==> r7c8 ≠ 1, r6c8 ≠ 2, r6c8 ≠ 1, r1c8 ≠ 2, r1c8 ≠ 1
hidden-pairs-in-a-block: b9{r7c8 r9c7}{n7 n9} ==> r9c7 ≠ 4, r9c7 ≠ 1
naked-triplets-in-a-row: r9{c3 c4 c9}{n4 n2 n1} ==> r9c6 ≠ 4, r9c6 ≠ 2, r9c6 ≠ 1, r9c1 ≠ 4, r9c1 ≠ 2, r9c1 ≠ 1
swordfish-in-columns: n9{c2 c5 c8}{r7 r6 r1} ==> r7c1 ≠ 9, r6c6 ≠ 9, r6c1 ≠ 9, r1c7 ≠ 9, r1c6 ≠ 9
swordfish-in-columns: n6{c3 c4 c9}{r6 r7 r1} ==> r7c6 ≠ 6, r7c1 ≠ 6, r6c7 ≠ 6, r6c1 ≠ 6, r1c7 ≠ 6, r1c6 ≠ 6
swordfish-in-columns: n7{c2 c5 c8}{r6 r1 r7} ==> r7c6 ≠ 7, r6c7 ≠ 7, r6c1 ≠ 7, r1c6 ≠ 7, r1c1 ≠ 7
hidden-pairs-in-a-block: b2{r1c5 r3c6}{n7 n9} ==> r3c6 ≠ 3, r3c6 ≠ 2, r3c6 ≠ 1, r1c5 ≠ 4, r1c5 ≠ 2, r1c5 ≠ 1
hidden-pairs-in-a-block: b4{r4c1 r6c2}{n7 n9} ==> r6c2 ≠ 3, r6c2 ≠ 2, r6c2 ≠ 1, r4c1 ≠ 3, r4c1 ≠ 2, r4c1 ≠ 1
swordfish-in-rows: n8{r3 r4 r9}{c1 c9 c6} ==> r8c6 ≠ 8, r8c1 ≠ 8, r6c9 ≠ 8, r6c6 ≠ 8, r1c9 ≠ 8, r1c1 ≠ 8
hidden-pairs-in-a-block: b1{r1c2 r3c1}{n7 n8} ==> r3c1 ≠ 3, r3c1 ≠ 2, r3c1 ≠ 1, r1c2 ≠ 3, r1c2 ≠ 2, r1c2 ≠ 1
hidden-pairs-in-a-block: b5{r4c6 r6c5}{n8 n9} ==> r6c5 ≠ 4, r6c5 ≠ 2, r6c5 ≠ 1, r4c6 ≠ 3, r4c6 ≠ 2, r4c6 ≠ 1
swordfish-in-rows: n2{r3 r4 r9}{c4 c7 c3} ==> r7c4 ≠ 2, r7c3 ≠ 2, r6c7 ≠ 2, r6c4 ≠ 2, r6c3 ≠ 2, r5c7 ≠ 2, r2c7 ≠ 2, r1c7 ≠ 2, r1c4 ≠ 2, r1c3 ≠ 2
x-wing-in-rows: n2{r1 r6}{c1 c6} ==> r7c6 ≠ 2, r7c1 ≠ 2, r5c6 ≠ 2, r5c1 ≠ 2, r2c6 ≠ 2, r2c1 ≠ 2
hidden-triplets-in-a-row: r7{n2 n7 n9}{c2 c5 c8} ==> r7c5 ≠ 4, r7c5 ≠ 1, r7c2 ≠ 3, r7c2 ≠ 1
hidden-triplets-in-a-column: c7{n2 n7 n9}{r3 r4 r9} ==> r4c7 ≠ 3, r4c7 ≠ 1, r3c7 ≠ 3, r3c7 ≠ 1
swordfish-in-rows: n1{r3 r4 r9}{c9 c4 c3} ==> r7c9 ≠ 1, r7c4 ≠ 1, r7c3 ≠ 1, r6c9 ≠ 1, r6c4 ≠ 1, r6c3 ≠ 1, r1c9 ≠ 1, r1c4 ≠ 1, r1c3 ≠ 1
swordfish-in-rows: n1{r1 r6 r7}{c6 c7 c1} ==> r8c7 ≠ 1, r8c6 ≠ 1, r8c1 ≠ 1, r5c7 ≠ 1, r5c6 ≠ 1, r5c1 ≠ 1, r2c7 ≠ 1, r2c6 ≠ 1, r2c1 ≠ 1
hidden-single-in-a-block ==> r9c9 = 1
naked-pairs-in-a-column: c9{r3 r4}{n3 n8} ==> r6c9 ≠ 3, r1c9 ≠ 3
hidden-pairs-in-a-row: r8{n1 n8}{c2 c5} ==> r8c5 ≠ 4
swordfish-in-rows: n5{r2 r5 r8}{c7 c1 c6} ==> r7c6 ≠ 5, r6c6 ≠ 5, r6c1 ≠ 5, r1c7 ≠ 5, r1c1 ≠ 5
hidden-pairs-in-a-block: b3{r1c9 r2c7}{n5 n6} ==> r2c7 ≠ 3
hidden-pairs-in-a-block: b4{r5c1 r6c3}{n5 n6} ==> r6c3 ≠ 3, r5c1 ≠ 3
hidden-pairs-in-a-block: b8{r7c4 r8c6}{n5 n6} ==> r8c6 ≠ 4, r7c4 ≠ 4
;;; bivalue-chains become useful here:
biv-chain[2]: b8n4{r9c4 r7c6} - c9n4{r7 r6} ==> r6c4 ≠ 4
biv-chain[3]: b8n2{r7c5 r9c4} - c4n4{r9 r1} - c5n4{r2 r5} ==> r5c5 ≠ 2
biv-chain[3]: c2n3{r2 r5} - r5n2{c2 c8} - c8n1{r5 r2} ==> r2c2 ≠ 1
biv-chain[3]: r2c2{n3 n2} - r2c8{n2 n1} - r1c7{n1 n3} ==> r1c1 ≠ 3, r1c3 ≠ 3
biv-chain[3]: b8n1{r7c6 r8c5} - r2n1{c5 c8} - b6n1{r5c8 r6c7} ==> r6c6 ≠ 1
biv-chain[3]: r3n1{c3 c4} - r2n1{c5 c8} - b3n2{r2c8 r3c7} ==> r3c3 ≠ 2
biv-chain[3]: c4n1{r4 r3} - r3c3{n1 n3} - c9n3{r3 r4} ==> r4c4 ≠ 3
biv-chain[4]: b7n9{r7c2 r9c1} - c7n9{r9 r3} - b3n2{r3c7 r2c8} - c5n2{r2 r7} ==> r7c2 ≠ 2
stte