After adding:
- to the generic part of CSP-Rules: OR3-Forcing-Whips
- to SudoRules, the detection of anti-tridagons with more than 2 guardians,
here is my new solution to this puzzle:
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 34789 2379 2479 ! 56789 479 5789 ! 59 5689 1 !
! 1789 179 179 ! 156789 2 3 ! 59 4 689 !
! 1489 5 6 ! 189 149 189 ! 2 3 7 !
+----------------------+----------------------+----------------------+
! 134679 1379 1479 ! 179 8 2 ! 134579 15679 3469 !
! 1479 1279 5 ! 3 179 6 ! 1479 12789 489 !
! 13679 8 1279 ! 4 5 179 ! 1379 12679 369 !
+----------------------+----------------------+----------------------+
! 179 4 3 ! 15789 179 15789 ! 6 179 2 !
! 2 6 179 ! 179 3 4 ! 8 179 5 !
! 5 179 8 ! 2 6 179 ! 13479 179 349 !
+----------------------+----------------------+----------------------+
189 candidates
- Code: Select all
naked-pairs-in-a-column: c7{r1 r2}{n5 n9} ==> r9c7≠9, r6c7≠9, r5c7≠9, r4c7≠9, r4c7≠5
hidden-single-in-a-block ==> r4c8=5
whip[1]: c7n9{r2 .} ==> r1c8≠9, r2c9≠9
hidden-pairs-in-a-row: r9{n3 n4}{c7 c9} ==> r9c9≠9, r9c7≠7, r9c7≠1
whip[1]: b9n1{r9c8 .} ==> r5c8≠1, r6c8≠1
whip[1]: b9n7{r9c8 .} ==> r5c8≠7, r6c8≠7
whip[1]: c9n9{r6 .} ==> r5c8≠9, r6c8≠9
hidden-pairs-in-a-row: r7{n5 n8}{c4 c6} ==> r7c6≠9, r7c6≠7, r7c6≠1, r7c4≠9, r7c4≠7, r7c4≠1
biv-chain[3]: r1c7{n9 n5} - r2n5{c7 c4} - b2n6{r2c4 r1c4} ==> r1c4≠9
biv-chain[4]: c3n4{r4 r1} - c3n2{r1 r6} - r6c8{n2 n6} - b4n6{r6c1 r4c1} ==> r4c1≠4
z-chain[5]: c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n7{c4 .} ==> r1c2≠7
biv-chain[6]: r1c7{n9 n5} - r2n5{c7 c4} - b2n6{r2c4 r1c4} - c8n6{r1 r6} - b6n2{r6c8 r5c8} - c2n2{r5 r1} ==> r1c2≠9
t-whip[5]: c1n6{r4 r6} - r6c8{n6 n2} - r5n2{c8 c2} - r1c2{n2 n3} - b4n3{r4c2 .} ==> r4c1≠1, r4c1≠7, r4c1≠9
z-chain[6]: r1n3{c1 c2} - c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n7{c4 .} ==> r1c1≠7
biv-chain[7]: r1c7{n9 n5} - r2n5{c7 c4} - b2n6{r2c4 r1c4} - c8n6{r1 r6} - b6n2{r6c8 r5c8} - c2n2{r5 r1} - b1n3{r1c2 r1c1} ==> r1c1≠9
+----------------------+----------------------+----------------------+
! 348 23 2479 ! 5678 479 5789 ! 59 68 1 !
! 1789 179 179 ! 156789 2 3 ! 59 4 68 !
! 1489 5 6 ! 189 149 189 ! 2 3 7 !
+----------------------+----------------------+----------------------+
! 36 1379 1479 ! 179 8 2 ! 1347 5 3469 !
! 1479 1279 5 ! 3 179 6 ! 147 28 489 !
! 13679 8 1279 ! 4 5 179 ! 137 26 369 !
+----------------------+----------------------+----------------------+
! 179 4 3 ! 58 179 58 ! 6 179 2 !
! 2 6 179 ! 179 3 4 ! 8 179 5 !
! 5 179 8 ! 2 6 179 ! 34 179 34 !
+----------------------+----------------------+----------------------+
OR4-anti-tridagon[12] (type diag) for digits 1, 7 and 9 in blocks:
b4, with cells: r4c3, r5c2, r6c1
b5, with cells: r4c4, r5c5, r6c6
b7, with cells: r8c3, r9c2, r7c1
b8, with cells: r8c4, r9c6, r7c5
with 4 guardians: n4r4c3 n2r5c2 n3r6c1 n6r6c1
Note that this OR4 relation is detected, but not used, as I don't have OR4-Forcing-Whips currently. But we can do without it:
- Code: Select all
+----------------------+----------------------+----------------------+
! 348 23 2479 ! 5678 479 5789 ! 59 68 1 !
! 1789 179 179 ! 156789 2 3 ! 59 4 68 !
! 1489 5 6 ! 189 149 189 ! 2 3 7 !
+----------------------+----------------------+----------------------+
! 36 1379 1479 ! 179 8 2 ! 1347 5 3469 !
! 1479 1279 5 ! 3 179 6 ! 147 28 489 !
! 13679 8 1279 ! 4 5 179 ! 137 26 369 !
+----------------------+----------------------+----------------------+
! 179 4 3 ! 58 179 58 ! 6 179 2 !
! 2 6 179 ! 179 3 4 ! 8 179 5 !
! 5 179 8 ! 2 6 179 ! 34 179 34 !
+----------------------+----------------------+----------------------+
OR3-anti-tridagon[12] (type antidiag) for digits 1, 7 and 9 in blocks:
b4, with cells: r4c2, r5c1, r6c3
b5, with cells: r4c4, r5c5, r6c6
b7, with cells: r9c2, r7c1, r8c3
b8, with cells: r9c6, r7c5, r8c4
with 3 guardians: n3r4c2 n4r5c1 n2r6c3
OR3-forcing-whip-elim[4] based on OR3-anti-tridagon[12] for n3r4c2, n4r5c1 and n2r6c3:
....partial-whip[1]: r1c2{n3 n2} -
....partial-whip[1]: c3n4{r4 r1} -
....partial-whip[1]: c2n2{r5 r1} -
==> r1c3≠2
singles ==> r1c2=2, r1c1=3, r4c1=6, r4c2=3, r6c3=2, r6c8=6, r1c8=8, r2c9=6, r5c8=2, r1c4=6, r5c9=8
A mere tridagon will allow to easily finish the puzzle:
- Code: Select all
+-------------------+-------------------+-------------------+
! 3 2 479 ! 6 479 579 ! 59 8 1 !
! 1789 179 179 ! 15789 2 3 ! 59 4 6 !
! 1489 5 6 ! 189 149 189 ! 2 3 7 !
+-------------------+-------------------+-------------------+
! 6 3 1479 ! 179 8 2 ! 147 5 49 !
! 1479 179 5 ! 3 179 6 ! 147 2 8 !
! 179 8 2 ! 4 5 179 ! 137 6 39 !
+-------------------+-------------------+-------------------+
! 179 4 3 ! 58 179 58 ! 6 179 2 !
! 2 6 179 ! 179 3 4 ! 8 179 5 !
! 5 179 8 ! 2 6 179 ! 34 179 34 !
+-------------------+-------------------+-------------------+
tridagon type diag for digits 1, 7 and 9 in blocks:
b4, with cells: r4c3 (target cell), r5c2, r6c1
b5, with cells: r4c4, r5c5, r6c6
b7, with cells: r8c3, r9c2, r7c1
b8, with cells: r8c4, r9c6, r7c5
==> r4c3≠1,7,9
singles ==> r4c3=4, r4c9=9, r6c9=3, r9c9=4, r9c7=3, r5c7=4, r3c1=4, r2c1=8, r1c5=4
whip[1]: r3n1{c6 .} ==> r2c4≠1
whip[1]: r3n9{c6 .} ==> r1c6≠9, r2c4≠9
finned-x-wing-in-columns: n7{c5 c1}{r7 r5} ==> r5c2≠7
whip[1]: b4n7{r6c1 .} ==> r7c1≠7
biv-chain[2]: c2n7{r9 r2} - b2n7{r2c4 r1c6} ==> r9c6≠7
biv-chain[3]: b2n8{r3c6 r3c4} - c4n9{r3 r8} - r9c6{n9 n1} ==> r3c6≠1
biv-chain[3]: c6n1{r9 r6} - r4c4{n1 n7} - b8n7{r8c4 r7c5} ==> r7c5≠1
biv-chain[3]: r5n7{c1 c5} - r7c5{n7 n9} - r7c1{n9 n1} ==> r5c1≠1
finned-x-wing-in-columns: n1{c6 c1}{r6 r9} ==> r9c2≠1
t-whip[4]: r1c3{n9 n7} - r2n7{c3 c4} - r4c4{n7 n1} - r8c4{n1 .} ==> r8c3≠9
whip[1]: c3n9{r2 .} ==> r2c2≠9
biv-chain[2]: b7n9{r9c2 r7c1} - r6n9{c1 c6} ==> r9c6≠9
naked-single ==> r9c6=1
biv-chain[3]: r2c2{n7 n1} - r5n1{c2 c5} - r4c4{n1 n7} ==> r2c4≠7
singles ==> r2c4=5, r1c6=7, r1c3=9, r1c7=5, r6c6=9, r3c6=8, r7c6=5, r2c7=9, r7c4=8
biv-chain[3]: c1n9{r7 r5} - r5n7{c1 c5} - r7c5{n7 n9} ==> r7c8≠9
biv-chain[3]: b9n1{r7c8 r8c8} - c8n9{r8 r9} - b7n9{r9c2 r7c1} ==> r7c1≠1
stte