.
This is not the pattern one would have to find. One can use two much simpler patterns and then very short ORk-chains:
hidden-pairs-in-a-row: r4{n4 n9}{c5 c6} ==> r4c6≠8, r4c6≠2, r4c6≠1, r4c5≠8, r4c5≠2, r4c5≠1
The 2 simple patterns (one used twice):
- Code: Select all
EL14c30s-OR2-relation for digits: 1, 2 and 8
in cells (marked #): (r9c4 r9c7 r1c4 r1c9 r3c5 r3c7 r2c5 r2c8 r4c4 r4c8 r6c5 r6c9 r5c6 r5c7)
with 2 guardians (in cells marked @) : n7r9c7 n3r3c5
+----------------------+----------------------+----------------------+
! 12389 136 2689 ! 128# 1238 7 ! 4 5 128# !
! 12478 147 278 ! 9 128# 5 ! 3 128# 6 !
! 12358 135 258 ! 4 1238#@ 6 ! 128# 9 7 !
+----------------------+----------------------+----------------------+
! 1278 167 2678 ! 128# 49 49 ! 5 128# 3 !
! 128 9 3 ! 5 7 128# ! 128# 6 4 !
! 1258 15 4 ! 6 128# 3 ! 9 7 128# !
+----------------------+----------------------+----------------------+
! 3459 8 59 ! 7 124569 1249 ! 126 1234 125 !
! 4579 2 1 ! 3 45689 489 ! 678 48 58 !
! 6 3457 57 ! 128# 12458 1248 ! 1278#@ 12348 9 !
+----------------------+----------------------+----------------------+
EL14c13s-OR2-relation for digits: 1, 2 and 8
in cells (marked #): (r9c4 r9c7 r3c7 r2c5 r2c8 r1c5 r1c4 r1c9 r4c4 r4c8 r6c5 r6c9 r5c6 r5c7)
with 2 guardians (in cells marked @) : n7r9c7 n3r1c5
+----------------------+----------------------+----------------------+
! 12389 136 2689 ! 128# 1238#@ 7 ! 4 5 128# !
! 12478 147 278 ! 9 128# 5 ! 3 128# 6 !
! 12358 135 258 ! 4 1238 6 ! 128# 9 7 !
+----------------------+----------------------+----------------------+
! 1278 167 2678 ! 128# 49 49 ! 5 128# 3 !
! 128 9 3 ! 5 7 128# ! 128# 6 4 !
! 1258 15 4 ! 6 128# 3 ! 9 7 128# !
+----------------------+----------------------+----------------------+
! 3459 8 59 ! 7 124569 1249 ! 126 1234 125 !
! 4579 2 1 ! 3 45689 489 ! 678 48 58 !
! 6 3457 57 ! 128# 12458 1248 ! 1278#@ 12348 9 !
+----------------------+----------------------+----------------------+
EL14c13-OR3-relation for digits: 1, 2 and 8
in cells (marked #): (r3c7 r1c4 r1c5 r1c9 r2c1 r2c5 r2c8 r6c5 r6c9 r4c4 r4c8 r5c1 r5c6 r5c7)
with 3 guardians (in cells marked @) : n3r1c5 n4r2c1 n7r2c1
+-------------------------+-------------------------+-------------------------+
! 12389 136 2689 ! 128# 1238#@ 7 ! 4 5 128# !
! 12478#@ 147 278 ! 9 128# 5 ! 3 128# 6 !
! 12358 135 258 ! 4 1238 6 ! 128# 9 7 !
+-------------------------+-------------------------+-------------------------+
! 1278 167 2678 ! 128# 49 49 ! 5 128# 3 !
! 128# 9 3 ! 5 7 128# ! 128# 6 4 !
! 1258 15 4 ! 6 128# 3 ! 9 7 128# !
+-------------------------+-------------------------+-------------------------+
! 3459 8 59 ! 7 124569 1249 ! 126 1234 125 !
! 4579 2 1 ! 3 45689 489 ! 678 48 58 !
! 6 3457 57 ! 128 12458 1248 ! 1278 12348 9 !
+-------------------------+-------------------------+-------------------------+
and then the short chains:
z-chain[3]: r1n9{c1 c3} - c3n6{r1 r4} - c3n2{r4 .} ==> r1c1≠2
z-chain[3]: r1n9{c1 c3} - c3n6{r1 r4} - c3n8{r4 .} ==> r1c1≠8
naked-quads-in-a-column: c5{r1 r3 r2 r6}{n8 n3 n2 n1} ==> r9c5≠8, r9c5≠2, r9c5≠1, r8c5≠8, r7c5≠2, r7c5≠1
biv-chain[4]: r8n6{c5 c7} - b9n7{r8c7 r9c7} - r9c3{n7 n5} - r9c5{n5 n4} ==> r8c5≠4
EL14c13s-OR2-whip[4]: OR2{{n3r1c5 | n7r9c7}} - r9c3{n7 n5} - r9c5{n5 n4} - r9c2{n4 .} ==> r1c2≠3
EL14c30s-OR2-whip[2]: OR2{{n7r9c7 | n3r3c5}} - c2n3{r3 .} ==> r9c2≠7
EL14c30s-OR2-whip[3]: r9c3{n5 n7} - OR2{{n7r9c7 | n3r3c5}} - c2n3{r3 .} ==> r9c2≠5biv-chain[4]: c2n7{r4 r2} - c2n4{r2 r9} - r9c5{n4 n5} - r9c3{n5 n7} ==> r4c3≠7
z-chain[4]: c3n8{r3 r4} - r4n6{c3 c2} - c2n7{r4 r2} - r2n4{c2 .} ==> r2c1≠8
z-chain[4]: c3n2{r3 r4} - r4n6{c3 c2} - c2n7{r4 r2} - r2n4{c2 .} ==> r2c1≠2
EL14c30s-OR2-whip[4]: c3n7{r2 r9} - OR2{{n7r9c7 | n3r3c5}} - c2n3{r3 r9} - c2n4{r9 .} ==> r2c2≠7singles ==> r4c2=7, r4c3=6, r1c2=6
whip[1]: b4n2{r6c1 .} ==> r3c1≠2
whip[1]: b4n8{r6c1 .} ==> r3c1≠8
biv-chain[4]: r9c5{n4 n5} - r9c3{n5 n7} - c1n7{r8 r2} - b1n4{r2c1 r2c2} ==> r9c2≠4
singles ==> r9c2=3, r7c8=3, r2c2=4
At least one candidate of a previous EL14c13-OR3-relation between candidates n3r1c5 n4r2c1 n7r2c1 has just been eliminated.
There remains an EL14c13-OR2-relation between candidates: n3r1c5 n7r2c1
z-chain[4]: c1n4{r7 r8} - r8c8{n4 n8} - r8c6{n8 n9} - r4c6{n9 .} ==> r7c6≠4
EL14c13s-OR2-whip[4]: r3n3{c1 c5} - OR2{{n3r1c5 | n7r9c7}} - c3n7{r9 r2} - r2c1{n7 .} ==> r3c1≠1
EL14c30s-OR2-whip[3]: r8n7{c1 c7} - OR2{{n7r9c7 | n3r3c5}} - r3c1{n3 .} ==> r8c1≠5
EL14c30s-OR2-whip[3]: r9c3{n5 n7} - OR2{{n7r9c7 | n3r3c5}} - r3c1{n3 .} ==> r3c3≠5whip[1]: c3n5{r9 .} ==> r7c1≠5
EL14c30s-OR2-whip[4]: b1n3{r1c1 r3c1} - OR2{{n3r3c5 | n7r9c7}} - c3n7{r9 r2} - r2c1{n7 .} ==> r1c1≠1
EL14c13s-OR2-whip[3]: r8n7{c1 c7} - OR2{{n7r9c7 | n3r1c5}} - r1c1{n3 .} ==> r8c1≠9whip[1]: r8n9{c6 .} ==> r7c5≠9, r7c6≠9
biv-chain[3]: r8c8{n8 n4} - r8c1{n4 n7} - b9n7{r8c7 r9c7} ==> r9c7≠8
biv-chain[3]: r8c1{n4 n7} - r9c3{n7 n5} - r9c5{n5 n4} ==> r8c6≠4
biv-chain[4]: r9c5{n4 n5} - b7n5{r9c3 r7c3} - r7n9{c3 c1} - r7n4{c1 c5} ==> r4c5≠4, r9c6≠4
singles ==> r4c5=9, r4c6=4, r8c6=9
whip[1]: r8n8{c9 .} ==> r9c8≠8
EL14c13-OR2-ctr-whip[4]: b1n1{r3c2 r2c1} - b4n1{r4c1 r6c2} - c5n1{r6 r1} - OR2{{n3r1c5 n7r2c1 | .}} ==> r3c7≠1naked-pairs-in-a-row: r3{c3 c7}{n2 n8} ==> r3c5≠8, r3c5≠2
EL14c13s-OR2-whip[4]: r3c5{n1 n3} - OR2{{n3r1c5 | n7r9c7}} - c3n7{r9 r2} - r2c1{n7 .} ==> r3c2≠1end in SFin[2]
Still not trivial but much easier to find than long chains - especially braids[19] if you don't use tridagons or close patterns in any way.
.