Symmetric 18 #118 by afmob

Post puzzles for others to solve here.

Symmetric 18 #118 by afmob

Postby eleven » Wed Dec 04, 2013 9:47 pm

Nice puzzle, though i only found a typical chain solution ([Edit:] at least typical at dailysudoku)
Code: Select all
 *-----------*
 |...|...|...|
 |..1|...|2..|
 |.3.|.4.|.5.|
 |---+---+---|
 |...|...|...|
 |..2|...|6..|
 |4..|.5.|..7|
 |---+---+---|
 |...|2.6|...|
 |..6|8.1|3..|
 |.7.|...|.9.|
 *-----------*
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: Symmetric 18 #118 by afmob

Postby Leren » Thu Dec 05, 2013 1:28 am

Code: Select all
*--------------------------------------------------------------------------------*
| 5789    2       4579     | 13579   68-1    35789    | 479     13467   1349     |
| 5789    4589    1        | 3579    68      35789    | 2       3467    349      |
| 6       3       79       |f179     4       2        |d789     5      e189      |
|--------------------------+--------------------------+--------------------------|
| 135789  15689   3579     | 34679-1 2       34789    | 4589    1348    134589   |
| 135789  1589    2        | 3479-1 a18      34789    | 6       1348    134589   |
| 4       16      39       | 6-1     5      b389      |c89      2       7        |
|--------------------------+--------------------------+--------------------------|
| 139     149     349      | 2       79      6        | 4578    478     458      |
| 59      459     6        | 8       79      1        | 3       47      2        |
| 2       7       8        | 45      3       45       | 1       9       6        |
*--------------------------------------------------------------------------------*

(1=8) r5c5 - r6c6 = r6c7 - r3c7 = (8-1) r3c9 = (1) r3c4 => - 1 r1c5, r456c4; stte

Leren
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Symmetric 18 #118 by afmob

Postby SteveG48 » Thu Dec 05, 2013 3:17 am

Code: Select all
.---------------------.--------------------.---------------------.
| 5789    2      4579 | b13579  c168 35789 | 479   13467  1349   |
| 5789    4589   1    | 3579    68   35789 | 2     3467   349    |
| 6       3      79   | bI179   4    2     | g789  5      h189   |
:---------------------+--------------------+---------------------:
| 135789  15689  3579 | 134679  2    34789 | 4589  1348   134589 |
| 135789  1589   2    | 13479   d18  34789 | 6     1348   134589 |
| 4       16     39   | aj16    5    e389  | f89   2      7      |
:---------------------+--------------------+---------------------:
| 139     149    349  | 2       79   6     | 4578  478    458    |
| 59      459    6    | 8       79   1     | 3     47     2      |
| 2       7      8    | 45      3    45    | 1     9      6      |
'---------------------'--------------------'---------------------'


Nice loop
(-6=1)r6c4 - (1)r13c4 = (1)r1c5 - (1=8)r5c5 - (8)r6c6 = (8)r6c7 - (8)r3c7 = (8-1)r3c9 = (1)r3c3 - (1=6)r6c4 => r6c4=6; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Symmetric 18 #118 by afmob

Postby Marty R. » Thu Dec 05, 2013 5:54 am

Leren wrote:
Code: Select all
*--------------------------------------------------------------------------------*
| 5789    2       4579     | 13579   68-1    35789    | 479     13467   1349     |
| 5789    4589    1        | 3579    68      35789    | 2       3467    349      |
| 6       3       79       |f179     4       2        |d789     5      e189      |
|--------------------------+--------------------------+--------------------------|
| 135789  15689   3579     | 34679-1 2       34789    | 4589    1348    134589   |
| 135789  1589    2        | 3479-1 a18      34789    | 6       1348    134589   |
| 4       16      39       | 6-1     5      b389      |c89      2       7        |
|--------------------------+--------------------------+--------------------------|
| 139     149     349      | 2       79      6        | 4578    478     458      |
| 59      459     6        | 8       79      1        | 3       47      2        |
| 2       7       8        | 45      3       45       | 1       9       6        |
*--------------------------------------------------------------------------------*

(1=8) r5c5 - r6c6 = r6c7 - r3c7 = (8-1) r3c9 = (1) r3c4 => - 1 r1c5, r456c4; stte

Leren


Same starting and ending points and eliminations, but Leren's path was shorter and didn't require the ALS's that I used.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: Symmetric 18 #118 by afmob

Postby eleven » Thu Dec 05, 2013 8:18 am

Leren wrote:(1=8) r5c5 - r6c6 = r6c7 - r3c7 = (8-1) r3c9 = (1) r3c4 => - 1 r1c5, r456c4; stte

Same, we called it kite (in 8) with transport.
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: Symmetric 18 #118 by afmob

Postby ronk » Thu Dec 05, 2013 2:15 pm

SteveG48 wrote:Nice loop
(6=1)r6c4 - (1)r13c4 = (1)r1c5 - (1=8)r5c5 - (8)r6c6 = (8)r6c7 - (8)r3c7 = (8-1)r3c9 = (1)r3c4 - (1=6)r6c4 => r6c4=6; stte

Starting and ending an AIC expression with the same candidate does not, by itself, make it a nice loop. In nice loop notation, a discontinuous loop within your AIC expression is:

r13c4 =1= r1c5 -1- r5c5 -8- r6c6 =8= r6c7 -8- r3c7 =8= r3c9 =1= r3c4 ==> r13c4=1 ==> r456c4,r1c5<>1; stte
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Symmetric 18 #118 by afmob

Postby SteveG48 » Thu Dec 05, 2013 11:59 pm

ronk wrote:
SteveG48 wrote:Nice loop
(6=1)r6c4 - (1)r13c4 = (1)r1c5 - (1=8)r5c5 - (8)r6c6 = (8)r6c7 - (8)r3c7 = (8-1)r3c9 = (1)r3c4 - (1=6)r6c4 => r6c4=6; stte

Starting and ending an AIC expression with the same candidate does not, by itself, make it a nice loop. In nice loop notation, a discontinuous loop within your AIC expression is:

r13c4 =1= r1c5 -1- r5c5 -8- r6c6 =8= r6c7 -8- r3c7 =8= r3c9 =1= r3c4 ==> r13c4=1 ==> r456c4,r1c5<>1; stte


Thanks. Was my solution still valid? (Other than the typo.)
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida

Re: Symmetric 18 #118 by afmob

Postby ronk » Fri Dec 06, 2013 12:38 am

SteveG48 wrote:
ronk wrote:In nice loop notation, a discontinuous loop within your AIC expression is:

r13c4 =1= r1c5 -1- r5c5 -8- r6c6 =8= r6c7 -8- r3c7 =8= r3c9 =1= r3c4 ==> r13c4=1 ==> r456c4,r1c5<>1; stte
Thanks. Was my solution still valid? (Other than the typo.)

Yes, my conclusion extended to yours is: (1)r13c4 - (1=6)r6c4 => r6c4=6
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Symmetric 18 #118 by afmob

Postby SteveG48 » Fri Dec 06, 2013 12:53 am

ronk wrote:Yes, my conclusion extended to yours is: (1)r13c4 - (1=6)r6c4 => r6c4=6


Thanks again.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4479
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles