TheSavage4 wrote:However, on c1r2, how did you manage to get rid of the candidate 3?
There is a naked pair 63 in c7 => remove all other 6s and 3s in c7
Now the only place for a 3 in box 3 is r2 => remove all other 3s in row 2 = c1r2
=> a naked quad 2567 in box 1 => remove all other 2567 in box 1
The puzzle can be solved with singles alone from here but since you asked about Xwing heres one that you could use
Xwing of 2s r36c24 => remove 2s from r1c24, r5c4, r7c2
- Code: Select all
*--------------------------------------------------------------------*
| 349 2567 349 | 257 567 2567 | 49 1 8 |
| 57 567 8 | 4 9 1 | 36 2 3567 |
| 49 2*567 1 | 2*57 3 8 | 49 567 567 |
|----------------------+----------------------+----------------------|
| 159 4 59 | 13579 1567 5679 | 8 356 2 |
| 6 3 259 | 2589 58 259 | 7 4 1 |
| 8 12*5 7 | 12*35 156 4 | 36 9 356 |
|----------------------+----------------------+----------------------|
| 1237 1278 23 | 6 4 79 | 5 378 379 |
| 457 9 456 | 578 2 3 | 1 678 467 |
| 13457 15678 3456 | 15789 1578 579 | 2 3678 34679 |
*--------------------------------------------------------------------*