- Code: Select all
39.2.57.......7...4....8.....4.5.2.15.....3..9.23..4...6.....82.......7..4.6.....
39.2.57.......7...4....8.....4.5.2.15.....3..9.23..4...6.....82.......7..4.6.....
3 9 8 | 2 14 5 | 7 14 6
6 25 15 | 149 3 7 | 8 124 59
4 257 157 | 19 6 8 | 159 123 359
------------------------+----------------------+---------------------
78 3 4 | 78 5 9 | 2 6 1
5 178 6 | 1478 12478 124 | 3 9 78
9 178 2 | 3 178 6 | 4 5 78
------------------------+----------------------+---------------------
17 6 3579 | 1457 1479 134 | 159 8 2
128 58 359 | 158 1289 123 | 6 7 4
1278 4 579 | 6 12789 12 | 159 13 359
;;; Resolution state RS0:
3 9 8 2 14 5 7 14 6
126 125 156 149 13469 7 8 123459 359
4 1257 1567 19 1369 8 159 12359 359
678 3 4 789 5 69 2 69 1
5 178 167 14789 1246789 12469 3 69 789
9 178 2 3 1678 16 4 56 578
17 6 13579 14579 13479 1349 159 8 2
128 1258 1359 1589 12389 1239 6 7 4
1278 4 13579 6 123789 1239 159 1359 359
;;; Resolution state RS1:
3 9 8 2 14 5 7 14 6
126 125 156 149 13469 7 8 123459 359
4 1257 1567 19 1369 8 159 12359 359
678 3 4 789 5 69 2 69 1
5 178 167 14789 124789 12469 3 69 789
9 178 2 3 178 16 4 56 578
17 6 13579 14579 1479 1349 159 8 2
128 1258 1359 1589 1289 1239 6 7 4
1278 4 1579 6 12789 129 159 1359 359
;;; Resolution state RS2:
3 9 8 2 14 5 7 14 6
6 25 15 149 3 7 8 124 59
4 257 157 19 6 8 159 123 359
78 3 4 78 5 9 2 6 1
5 178 6 1478 12478 124 3 9 78
9 178 2 3 178 6 4 5 78
17 6 3579 1457 1479 134 159 8 2
128 58 359 158 1289 123 6 7 4
1278 4 579 6 12789 12 159 13 359
whip[8]: r4n8{c1 c4} - c5n8{r6 r8} - r8c2{n8 n5} - r8c4{n5 n1} - c6n1{r9 r5} - r6c5{n1 n7} - c4n7{r5 r7} - c4n5{r7 .} ==> r9c1 ≠ 8
Singles and whips[1] to the end
whip[9]: r2c2{n5 n2} - r3c2{n2 n7} - b4n7{r6c2 r4c1} - r4c4{n7 n8} - r8c4{n8 n1} - c6n1{r9 r5} - r6c5{n1 n7} - c4n7{r5 r7} - c4n5{r7 .} ==> r8c2 ≠ 5
stte
whip[9]: r4c1{n8 n7} - c2n7{r6 r3} - c2n2{r3 r2} - c2n5{r2 r8} - r8c4{n5 n1} - c6n1{r9 r5} - r6c5{n1 n7} - c4n7{r5 r7} - c4n5{r7 .} ==> r4c4 ≠ 8
stte
whip[9]: c2n7{r6 r3} - c2n2{r3 r2} - c2n5{r2 r8} - c4n5{r8 r7} - c4n7{r7 r5} - r4c4{n7 n8} - r6c5{n8 n1} - r1c5{n1 n4} - c4n4{r2 .} ==> r4c1 ≠ 7
stte
CURRENT RESOLUTION STATE:
3 9 8 2 4 5 7 1 6
6 2 15 9 3 7 8 4 59
4 57 17 19 6 8 59 2 3
78 3 4 78 5 9 2 6 1
5 1 6 48 2 4 3 9 78
9 78 2 3 1 6 4 5 78
1 6 39 45 7 34 59 8 2
2 58 39 15 89 13 6 7 4
78 4 57 6 89 2 1 3 59
*------------------------------------------------*
| 3 9 8 | 2 14 5 | 7 14 6 |
| 6 25 15 | 149 3 7 | 8 124 59 |
| 4 257 157 | 19 6 8 | 159 123 359 |
|---------------+------------------+-------------|
|b78 3 4 |a78 5 9 | 2 6 1 |
| 5 178 6 | 1478 1247-8 124 | 3 9 78 |
| 9 178 2 | 3 17-8 6 | 4 5 78 |
|---------------+------------------+-------------|
| 17 6 3579 | 1457 1479 134 | 159 8 2 |
| 128 58 359 | 15-8 1289 123 | 6 7 4 |
|c1278 4 579 | 6 d12789 12 | 159 13 359 |
*------------------------------------------------*
*--------------------------------------------------*
| 3 9 8 | 2 14 5 | 7 14 6 |
| 6 25 15 | 149 3 7 | 8 124 59 |
| 4 257 157 | 19 6 8 | 159 123 359 |
|---------------+--------------------+-------------|
| 78 3 4 | e78 5 9 | 2 6 1 |
| 5 178 6 | e1478 1247 c124 | 3 9 78 |
| 9 178 2 | 3 d17 6 | 4 5 78 |
|---------------+--------------------+-------------|
| 17 6 3579 | f147-5 1479 b134 | 159 8 2 |
| 128 58 359 | a15 1289 b123 | 6 7 4 |
| 1278 4 579 | 6 12789 b12 | 159 13 359 |
*--------------------------------------------------*
.-----------------.------------------.---------------.
| 3 9 8 | 2 14 5 | 7 14 6 |
| 6 25 15 | 149 3 7 | 8 124 59 |
| 4 257 157 | 19 6 8 | 159 123 359 |
:-----------------+------------------+---------------:
| 78 3 4 | 78 5 9 | 2 6 1 |
| 5 178 6 | 1478 12478 124 | 3 9 78 |
| 9 178 2 | 3 178 6 | 4 5 78 |
:-----------------+------------------+---------------:
| 17 6 3579 | 1457 1479 134 | 159 8 2 |
| 128 58 359 | 158 1289 123 | 6 7 4 |
| 1278 4 579 | 6 12789 12 | 159 13 359 |
'-----------------'------------------'---------------'
AnotherLife wrote:Now it is possible to get a one-step solution with a forcing net. [...]
denis_berthier wrote:whip[9]: c2n7{r6 r3} - c2n2{r3 r2} - c2n5{r2 r8} - c4n5{r8 r7} - c4n7{r7 r5} - r4c4{n7 n8} - r6c5{n8 n1} - r1c5{n1 n4} - c4n4{r2 .} ==> r4c1 ≠ 7
AnotherLife wrote:denis_berthier wrote:whip[9]: c2n7{r6 r3} - c2n2{r3 r2} - c2n5{r2 r8} - c4n5{r8 r7} - c4n7{r7 r5} - r4c4{n7 n8} - r6c5{n8 n1} - r1c5{n1 n4} - c4n4{r2 .} ==> r4c1 ≠ 7
Can you explain your solution graphically?
yzfwsf wrote:Hi denis:
Can you provide a graphical representation of the specific steps you found in this puzzle? Convenient to compare and see what is the difference with AIC? Thank you .
1 2 3 4 5 6 7 8 9
.------------------+------------------+---------------.
| 3 9 8 | 2 14 5 | 7 14 6 | 1
| 6 25 15 | 149 3 7 | 8 124 59 | 2
| 4 257 157 | 19 6 8 | 159 123 359 | 3
|------------------+------------------+---------------|
| d78* 3 4 |e78# 5 9 | 2 6 1 | 4
| 5 178 6 | 1478 1247-8 124 | 3 9 78 | 5
| 9 178 2 | 3 17-8 6 | 4 5 78 | 6
|------------------+------------------+---------------|
| 1-7 6 3579 | 1457 1479 134 | 159 8 2 | 7
| 128 58 359 | 15-8 1289 123 | 6 7 4 | 8
|ca1278* 4 a579* | 6 b12789# 12 | 159 13 359 | 9
'------------------+------------------+---------------'
1 2 3 4 5 6 7 8 9
.------------------+------------------+---------------.
| 3 9 8 | 2 14 5 | 7 14 6 | 1
| 6 25 15 | 149 3 7 | 8 124 59 | 2
| 4 257 157 | 19 6 8 | 159 123 359 | 3
|------------------+------------------+---------------|
| d78 3 4 |e78 5 9 | 2 6 1 | 4
| 5 178 6 | 1478 12478 124 | 3 9 78 | 5
| 9 178 2 | 3 17 6 | 4 5 78 | 6
|------------------+------------------+---------------|
| 1 6 3579 |a45-7 479 34 | 59 8 2 | 7
| c28 c58 359 |b15 1289 123 | 6 7 4 | 8
| c278 4 579 | 6 12789 12 | 159 13 359 | 9
'------------------+------------------+---------------'
ghfick wrote:Hi Denis,
I think that yzfwsf and Another Life would like to see the example whip[9] explained in detail. I think there are many members of this forum [me included] who would appreciate a visual explanation. If I am correct, the visuals [for this example puzzle] would be many. One will need the grid with candidates displayed in all 4 ways [rc, rn cn, bn] and for each of the 9 parts of the whip[9]. So, I think there might be as many as 36! grids.
I think you may say I am wrong and you will say I should read the BUM. All I can say is that I have tried to read and study the BUM since you first advised us to do so. Indeed, even the notation for whip[1] still eludes me. On pg 16, one reads r3n4{c5 .} => r4c6 ≠ 4. What does the dot . mean? I would appreciate an explanation that is specific to the 9x9 Sudoku and not the 'general' case.
Perhaps you will argue that we all need to 'see' things in 3D. Well, 3D displays are not easy to reconcile. XSudo is amazing but not for the faint of heart.
Regards Gordon
whip[9]: c2n7{r6 r3} - c2n2{r3 r2} - c2n5{r2 r8} - c4n5{r8 r7} - c4n7{r7 r5} - r4c4{n7 n8} - r6c5{n8 n1} - r1c5{n1 n4} - c4n4{r2 .} ==> r4c1 ≠ 7