Suggest A Play (SAP#1)

Post puzzles for others to solve here.

Re: Suggest A Play (SAP#1)

Postby JC Van Hay » Tue Dec 10, 2013 7:34 am

Leren wrote:
DonM wrote: This move is seen more commonly as an AAIC/column (or Kraken column)

Thanks for .... the notation tip. From the responses of the other solvers I felt that the use of WME's (that's Weapons of Mass Elimination) was warranted :D .

Leren
Another notation : as an AIC with "patterns" :
Code: Select all
+---------------------+---------------------+--------------+
| 2      34579  379   | 379    1      4579  | 8  35   6    |
| (39)   3459   6     | 8      4(9)   2     | 1  35   7    |
| 1      357    8     | 367    67     567   | 4  2    9    |
+---------------------+---------------------+--------------+
| 78(9)  1      2     | 67(9)  5      67(9) | 3  468  48   |
| 3789   379    379   | 4      67(9)  1     | 2  68   5    |
| 4      6      5     | 2      8      3     | 9  7    1    |
+---------------------+---------------------+--------------+
| -3(7)  8      4     | 1      267    67    | 5  9    23   |
| 6      239    139   | 5      24(9)  489   | 7  148  2348 |
| 5      29(7)  19(7) | (79)   3      4789  | 6  148  248  |
+---------------------+---------------------+--------------+
Chain[5!] : 7r7c1=7r9c23-(7=9)r9c4-9r8c5=*Kite(9r25*c5,9r4c641)-(9=3)r2c1 :=> -3r7c1
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Suggest A Play (SAP#1)

Postby daj95376 » Wed Dec 11, 2013 10:19 pm

DonM wrote:
Code: Select all
SAP #1 Post SSTS (Simple Sudoku Technique Set)  ER=7.7
 *--------------------------------------------------------------------*
 | 2      34579  379    | 379    1      4579   | 8      35     6      |
 | 39     3459   6      | 8      49     2      | 1      35     7      |
 | 1      357    8      | 367    67     567    | 4      2      9      |
 |----------------------+----------------------+----------------------|
 | 789    1      2      | 679    5      679    | 3      468    48     |
 | 3789   379    379    | 4      679    1      | 2      68     5      |
 | 4      6      5      | 2      8      3      | 9      7      1      |
 |----------------------+----------------------+----------------------|
 | 37     8      4      | 1      267    67     | 5      9      23     |
 | 6      239    139    | 5      249    489    | 7      148    2348   |
 | 5      279    179    | 79     3      4789   | 6      148    248    |
 *--------------------------------------------------------------------*


A solution very close to Dan's. It was found by my solver, but I don't think anyone will mind at this point.

Code: Select all
(2=67)r7c56 - (7)r7c1 = (7)r45c1 - (7=39)r5c23 - (9=67)r35c5  =>  r7c5<>67


BTW: Did I miss something in JC's first solution? He found two overlapping Almost finned X-WIngs where both finned X-Wings couldn't be true at the same time. This forced a strong link between the Almost candidates. However, he only used one Almost finned X-Wing in his solution ... and ignored the strong link. Basically, interesting but not useful overlapping relationship? I was expecting a first step like:

Code: Select all
(7=9)r9c4 - (9)r8c5 =overlap= (7)r3c5  =>  r13c4,r7c5<>7
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Re: Suggest A Play (SAP#1)

Postby JC Van Hay » Thu Dec 12, 2013 3:34 pm

daj95376 wrote:BTW: Did I miss something in JC's first solution? He found two overlapping Almost finned X-WIngs where both finned X-Wings couldn't be true at the same time. This forced a strong link between the Almost candidates. However, he only used one Almost finned X-Wing in his solution ... and ignored the strong link. Basically, interesting but not useful overlapping relationship? I was expecting a first step like:

Code: Select all
(7=9)r9c4 - (9)r8c5 =overlap= (7)r3c5  =>  r13c4,r7c5<>7
I should have given more details. So, to be complete, here they are :) :

The excluded candidates resulting from the solutions of the 2 Almost FinnedXWings 79C15 and the 3 cells R5C23+R9C4 are not only 7r13c4,7r7c5 but also 7r9c23,r7c6.
However -7r7c5 is a cannibalistic exclusion from 7C5 (killing the AFXW(7) in the same time).
In such a situation, it is still conjectured that such an exclusion should have a simpler interpretation.
It is the case here : removing 7C5 only removes the exclusion of 7r13c4.
Nevertheless, the puzzle is still fortunately cracked by the remaining exclusions due to the placement +3r7c1 in both cases.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Previous

Return to Puzzles