## Suggest A Move (SAM#5)

Post puzzles for others to solve here.

### Suggest A Move (SAM#5)

Welcome to the occasional/sporadic 'Suggest A Move' (SAM) series, consisting of of a puzzle at a point where there are some interesting patterns and manual solvers are invited to come up with any interesting patterns/chains they discover. There is no hidden surprise or backdoor (at least not that I know of) or some other trick awaiting and I haven't made any exhaustive search for all possible interesting patterns. It is simply an interesting puzzle.

SAM#5 is a particularly interesting puzzle with rather amazing 'depth'. There is a lot to be learned from a puzzle like this. Newer manual solvers shouldn't have any trouble finding some interesting initial patterns. More advanced solvers will find it a nice challenge. As the 'Suggest A Move' name implies, please allow the first day of the puzzle's release for initial 'moves' (ie. avoid giving full solutions). After that, the puzzle is open to a full solution. (This is not a 'single-stepper'!)

[Note: SSTS means Simple Sudoku Techniques Set. Post-SSTS means that the original puzzle was solved by Simple Sudoku to the point where there is 'No Hint Available'. (This means that some basic patterns that solvers may be used to finding in simpler puzzles have already been solved.) ER means Explainer Rating whereby Sudoku Explainer assigns a general difficulty value to the puzzle.]

Code: Select all
`*-----------* |4..|...|..3| |..5|...|2..| |.8.|3..|69.| |---+---+---| |7..|.49|...| |52.|.8.|.79| |...|27.|..6| |---+---+---| |.73|..1|.6.| |..9|...|5..| |8..|...|..2| *-----------*`

Code: Select all
`SAM#5: ER=7.3 at the Post-SSTS position: *--------------------------------------------------------------------* | 4      69     27     | 6789   1269   25678  | 178    158    3      | | 39     369    5      | 46789  169    4678   | 2      148    1478   | | 1      8      27     | 3      25     247    | 6      9      457    | |----------------------+----------------------+----------------------| | 7      13     168    | 156    4      9      | 138    2      158    | | 5      2      146    | 16     8      36     | 134    7      9      | | 39     1349   148    | 2      7      35     | 1348   13458  6      | |----------------------+----------------------+----------------------| | 2      7      3      | 4589   59     1      | 489    6      48     | | 6      14     9      | 478    23     2478   | 5      1348   1478   | | 8      5      14     | 4679   369    467    | 13479  134    2      | *--------------------------------------------------------------------*`
DonM
2013 Supporter

Posts: 475
Joined: 13 January 2008

### Re: Suggest A Move (SAM#5)

Withdrawn - mistook a chain for a continuous loop.
Last edited by David P Bird on Tue Jan 07, 2014 2:28 pm, edited 1 time in total.
David P Bird
2010 Supporter

Posts: 1043
Joined: 16 September 2008
Location: Middle England

### Re: Suggest A Move (SAM#5)

Manual "Basics" show how to tackle the puzzle. Here is a possible first move (somewhat simplifying a complex one-stepper):
Code: Select all
`+---------------+---------------------+------------------------+| 4   69    27  | 6789    1269  25678 | 178       158    3     || 39  369   5   | 46789   169   4678  | 2         148    1478  || 1   8     27  | 3       2(5)  27(4) | 6         9      7(45) |+---------------+---------------------+------------------------+| 7   13    168 | 16(5)   4     9     | 138       2      158   || 5   2     146 | 16      8     (36)  | 134       7      9     || 39  1349  148 | 2       7     (35)  | 1348      13458  6     |+---------------+---------------------+------------------------+| 2   7     3   | 489(5)  (59)  1     | 48(9)     6      48    || 6   14    9   | 478     23    278   | 5         1348   1478  || 8   5     14  | 4679    369   (467) | 134-7(9)  134    2     |+---------------+---------------------+------------------------+`
#1. Chain [8] : 7r9c6=*[5r7c4=5r4c4-(5=36)r56c6-(6=*4)r9c7-4r3c6=(4-5)r3c9=5r3c5]-(5=9)r7c5-9r7c7=9r9c7 :=> -7r9c7; 4 Singles
or
Kraken Cell (467)r9c6 :=> [9r9c7==7r9c6]-7r9c7; 4 Singles

4r9c6-4r3c6=(4-5)r3c9=5r3c5-(5=9)r7c5-9r7c7=9r9c7
||
6r9c6-(6=35)r56c6-5r4c4=5r7c4-(5=9)r7c5-9r7c7=9r9c7
||
7r9c6
JC Van Hay

Posts: 719
Joined: 22 May 2010

### Re: Suggest A Move (SAM#5)

Code: Select all
` *--------------------------------------------------------------------* | 4      69     27     | 6789   1269   25678  | 178    158    3      | | 39     369    5      | 46789  169    4678   | 2      148    1478   | | 1      8      27     | 3      25     247    | 6      9      457    | |----------------------+----------------------+----------------------| | 7      13    *68-1   |*156    4      9      | 138    2      158    | | 5      2     *146    |*16     8      36     | 134    7      9      | | 39     1349   148    | 2      7      35     | 1348   13458  6      | |----------------------+----------------------+----------------------| | 2      7      3      | 4589   59     1      | 489    6      48     | | 6      14     9      | 478    23     2478   | 5      1348   1478   | | 8      5      14     | 4679   369    467    | 13479  134    2      | *--------------------------------------------------------------------*Hidden Rectangle16r45c34 => -1r4c3`
dan

ArkieTech

Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

### Re: Suggest A Move (SAM#5)

Code: Select all
` *--------------------------------------------------------------------* | 4      69     27     | 6789   1269   25678  | 178    158    3      | |*39    *369    5      | 46789  169    4678   | 2      148    1478   | | 1      8      27     | 3      25     247    | 6      9      457    | |----------------------+----------------------+----------------------| | 7      13     168    | 156    4      9      | 138    2      158    | | 5      2      146    | 16     8      36     | 134    7      9      | |*39    *1349   148    | 2      7      35     | 1348   13458  6      | |----------------------+----------------------+----------------------| | 2      7      3      | 4589   59     1      | 489    6      48     | | 6      14     9      | 478    23     2478   | 5      1348   1478   | | 8      5      14     | 4679   369    467    | 13479  134    2      | *--------------------------------------------------------------------*`

Another hidden rectangle (39)r26c12 ==>r6c2<>9

Luke
2015 Supporter

Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

### Re: Suggest A Move (SAM#5)

SAM#5 is now open to full solving.
DonM
2013 Supporter

Posts: 475
Joined: 13 January 2008

### Re: Suggest A Move (SAM#5)

Code: Select all
`+-----------------+--------------------+----------------------+| 4   69    2     | 689    169    568  | 7       158     3    || 39  369   5     | 46789  169    4678 | 2       148     148  || 1   8     7     | 3      -5(2)  24   | 6       9       (45) |+-----------------+--------------------+----------------------+| 7   13    168   | 156    4      9    | 138     2       158  || 5   2     16(4) | 16     8      36   | 13(4)   7       9    || 39  1349  148   | 2      7      35   | 1348    13458   6    |+-----------------+--------------------+----------------------+| 2   7     3     | 4589   59     1    | 89(4)   6       8(4) || 6   4(1)  9     | 48     (23)   28   | 5       8(134)  7    || 8   5     (14)  | 4679   369    467  | 139(4)  13(4)   2    |+-----------------+--------------------+----------------------+`
#2. Kraken 4B9 :=> [2r3c5==5r3c9]-5r3c5; ste

EmptyRectangle(4r5c37,4r79c7r9c8)-(4=1)r9c3-1r8c2=(1-3)r8c8=(3-2)r8c5=2r3c5
||
4r8c8-3r8c8=(3-2)r8c5=2r3c5
||
4r7c9-(4=5)r3c9
JC Van Hay

Posts: 719
Joined: 22 May 2010

### Re: Suggest A Move (SAM#5)

JC, could you edit your post above and put Step#1 (from further above) in it? The solution is really worth seeing altogether. Thanks.
DonM
2013 Supporter

Posts: 475
Joined: 13 January 2008

### Re: Suggest A Move (SAM#5)

The complete solution.

#0. "Basics" = N-tuples + NxM-Fishes, N=1,2,3, ...

5 Singles; LC(1r45c4,3r56c6)-1r12c4,3r89c6
Jellyfish(4R357C2) : r8c2=r6c2-r5c3=r5c6-r7c7=*Skyscraper[r7c4=*r7c9-r3c9=r3c6] :=> -4r8c6
FXWing(5C68)-5r1c45=XWing(5R16)-5r3c5 [=> only 2 solutions for the digit 5]
HP(27-6)r13c3=LC(6r12c2)-6r4c2

Note : r6c6=5->4r5c3=4 AND r9c3=4 !? :=> r6c6=3, solving the 5s; ste

As the analysis of the puzzle shows that r9c7<>7 [=> 4 Singles] (the other implied placements in stack 1 playing no role) :
Code: Select all
`+---------------+---------------------+------------------------+| 4   69    27  | 6789    1269  25678 | 178       158    3     || 39  369   5   | 46789   169   4678  | 2         148    1478  || 1   8     27  | 3       2(5)  27(4) | 6         9      7(45) |+---------------+---------------------+------------------------+| 7   13    168 | 16(5)   4     9     | 138       2      158   || 5   2     146 | 16      8     (36)  | 134       7      9     || 39  1349  148 | 2       7     (35)  | 1348      13458  6     |+---------------+---------------------+------------------------+| 2   7     3   | 489(5)  (59)  1     | 48(9)     6      48    || 6   14    9   | 478     23    278   | 5         1348   1478  || 8   5     14  | 4679    369   (467) | 134-7(9)  134    2     |+---------------+---------------------+------------------------+`
#1. Chain [8] : 7r9c6=*[5r7c4=5r4c4-(5=36)r56c6-(6=*4)r9c6-4r3c6=(4-5)r3c9=5r3c5]-(5=9)r7c5-9r7c7=9r9c7 :=> -7r9c7; 4 Singles
or
Kraken Cell (467)r9c6 :=> [9r9c7==7r9c6]-7r9c7; 4 Singles

4r9c6-4r3c6=(4-5)r3c9=5r3c5-(5=9)r7c5-9r7c7=9r9c7
||
6r9c6-(6=35)r56c6-5r4c4=5r7c4-(5=9)r7c5-9r7c7=9r9c7
||
7r9c6

Solving the 5s :
Code: Select all
`+-----------------+--------------------+----------------------+| 4   69    2     | 689    169    568  | 7       158     3    || 39  369   5     | 46789  169    4678 | 2       148     148  || 1   8     7     | 3      -5(2)  24   | 6       9       (45) |+-----------------+--------------------+----------------------+| 7   13    168   | 156    4      9    | 138     2       158  || 5   2     16(4) | 16     8      36   | 13(4)   7       9    || 39  1349  148   | 2      7      35   | 1348    13458   6    |+-----------------+--------------------+----------------------+| 2   7     3     | 4589   59     1    | 89(4)   6       8(4) || 6   4(1)  9     | 48     (23)   28   | 5       8(134)  7    || 8   5     (14)  | 4679   369    467  | 139(4)  13(4)   2    |+-----------------+--------------------+----------------------+`
#3. Chain [7] : (5=4)r3c9-4r7c9=*[1r8c8=1r8c2-(1=4)r9c3-EmptyRectangle(4r5c37,4r79c7r9c8*)=4r8c8]-3r8c8=(3-2)r8c5=2r3c5 :=> -5r3c5; ste
or
Kraken 4B9 :=> [2r3c5==5r3c9]-5r3c5; ste

EmptyRectangle(4r5c37,4r79c7r9c8)-(4=1)r9c3-1r8c2=(1-3)r8c8=(3-2)r8c5=2r3c5
||
4r8c8-3r8c8=(3-2)r8c5=2r3c5
||
4r7c9-(4=5)r3c9
JC Van Hay

Posts: 719
Joined: 22 May 2010

### Re: Suggest A Move (SAM#5)

Hi JC,

Nice solution

Here's an alternate ending.
(I'm trying to mimic your style here ...)

Code: Select all
`+---------------+---------------------+------------------+| 4   69    2   | 689    19(6)  (568) | 7     158    3   || 39  369   5   | 46789  19(6)  4678  | 2     148    148 || 1   8     7   | 3      (25)   24    | 6     9      45  |+---------------+---------------------+------------------+| 7   13    168 | 156    4      9     | 138   2      158 || 5   2     146 | 16     8      36    | 134   7      9   || 39  1349  148 | 2      7      35    | 1348  13458  6   |+---------------+---------------------+------------------+| 2   7     3   | 4589   59     1     | 489   6      48  || 6   14    9   | 48     -2(3)  (28)  | 5     1348   7   || 8   5     14  | 4679   9(36)  467   | 1349  134    2   |+---------------+---------------------+------------------+`

#3. Chain[5] : 3r8c5=(3-6)r9c5=r12c5-6r1c6=*XYWing[(2=8)r8c6-(8=*5)r1c6-(5=2)r3c5] :=> -2r8c5; ste
or
Kraken cell (568)r1c6 :=> [3r8c5==2r8c6==2r3c5]-2r8c5; ste

6r1c6 - r12c5 = (6-3)r9c5 = 3r8c5
||
8r1c6 - (8=2)r8c6
||
5r1c6 - (5=2)r3c5
blue

Posts: 894
Joined: 11 March 2013

### Re: Suggest A Move (SAM#5)

[Edit:] Ah, i missed blues' nice almost xy-wing !

Nice step, JC (almost almost empty rectangle).

However, to find such a solution, it looks easier to me to follow this chain and observe, that it kills all 4's in box 9.
Code: Select all
`4r3c9 -> 2r3c6->8r8c6 -> 4r8c4 -> 4r9c3 -> 4r5c7r7c9                     r8c8     r9c78    r7c7 <> 4  => contradiction, r3c9<>4`

Btw, also the 1 in r5c3 is killed by the UR 16r45c34, but the strong ling for 1 then in c3 was no help for me.
eleven

Posts: 2418
Joined: 10 February 2008

### Re: Suggest A Move (SAM#5)

JC Van Hay wrote:
Code: Select all
`+-----------------+--------------------+----------------------+| 4   69    2     | 689    169    568  | 7       158     3    || 39  369   5     | 46789  169    4678 | 2       148     148  || 1   8     7     | 3      -5(2)  24   | 6       9       (45) |+-----------------+--------------------+----------------------+| 7   13    168   | 156    4      9    | 138     2       158  || 5   2     16(4) | 16     8      36   | 13(4)   7       9    || 39  1349  148   | 2      7      35   | 1348    13458   6    |+-----------------+--------------------+----------------------+| 2   7     3     | 4589   59     1    | 89(4)   6       8(4) || 6   4(1)  9     | 48     (23)   28   | 5       8(134)  7    || 8   5     (14)  | 4679   369    467  | 139(4)  13(4)   2    |+-----------------+--------------------+----------------------+`

#3. Kraken 4B9 :=> [2r3c5==5r3c9]-5r3c5; ste

EmptyRectangle(4r5c37 ,4r79c7r9c8) -(4=1)r9c3-1r8c2=(1-3)r8c8=(3-2)r8c5=2r3c5
||
4r8c8-3r8c8=(3-2)r8c5=2r3c5
||
4r7c9-(4=5)r3c9

JC's move here is very clever (and the notation makes it about as easy to understand as possible). You won't find an almost-almost Empty Rectangle that often, because you have to both know and find the pattern and then you have to apply it. But the concept behind it is relatively (though deceptively) simple- so for those who may not be sure how it works:

The core of the move is based on the fact that if 4r8c8 and 4r7c9 were not true then the existence of the Empty Rectangle pattern would eliminate 4r9c3 which, when you follow the inferences, eliminates 5r3c5 and places 2r3c5 and the puzzle falls apart.

JC first declares the empty rectangle pattern: (4r5c37 ,4r79c7r9c8). Take a look at the conjugate pair: 4r5c37: if 4r5c3 were true then 4r9c3 is eliminated. But if 4r5c7 is true then 4r79c7 in box 9 would be eliminated and, now, if 4r9c3 were also true then 4r79c7 would be eliminated which would mean that, again if 4r8c8 and 4r7c9 weren't true, then box 9 would be emptied of 4s which is impossible. Thus, ordinarily, no matter whether 4r5c3 is true or 4r5c7 is true, 4r9c3 could be eliminated.

But to make this work, there is still 4r8c8 and 4r7c9 to deal with: JC's chains show that if you assume that 4r8c8 and 4r7c9 are not true, then if you follow the inferences, 5r3c5 can be eliminated and 2r3c5 placed. Thus, all three premises, the ER pattern, not 4r8c8 and not 4r8c8 all result in support of the elimination of 5r3c5 and the placement of 2r3c5.
Last edited by DonM on Thu Jan 09, 2014 8:58 pm, edited 2 times in total.
DonM
2013 Supporter

Posts: 475
Joined: 13 January 2008

### Re: Suggest A Move (SAM#5)

_

Not a manual solution ... that starts off with an almost cannibalistic Kraken Cell. (at least, one way to view it!)

Code: Select all
` +-----------------------------------------------------------------------+ |  4      69     27     |  6789   1269   25678  |  178    158    3      | |  39     369    5      |  46789  169    4678   |  2      148    1478   | |  1      8      27     |  3      25     247    |  6      9      457    | |-----------------------+-----------------------+-----------------------| |  7      13     168    |  156    4      9      |  138    2      158    | |  5      2      146    |  16     8      36     |  134    7      9      | |  39     1349   148    |  2      7      35     |  1348   13458  6      | |-----------------------+-----------------------+-----------------------| |  2      7      3      |  4589   59     1      |  489    6      48     | |  6      14     9      |  478    23     2478   |  5      1348   1478   | |  8      5      14     |  4679   369    467    |  13479  134    2      | +-----------------------------------------------------------------------+ # 102 eliminations remain JC's step as a discontinuous (network) loop: (7)r9c7 - (9)r9c7 = r7c7 - (9=5)r7c5 - r3c5 = (5-4)r3c9 = r3c6   - (4)r9c6 \                                      - r7c4 = r4c4 - (35=6)r56c6 - (6)r9c6 = (7)r9c6 - (7)r9c7 Three additional discontinuous loops: (1)r9c7 - (1=4)r9c3 - r5c3 = (4-3)r5c7 = r5c6 - (3=5)r6c6 - r1c6 = r3c5 - (5=9)r7c5 - r7c7 = (9-1)r9c7 (3)r9c7 - (3)r5c7 = r5c6 - (3=5)r6c6 - r1c6 = r3c5 - (5=9)r7c5 - r7c7 =                      (9-3)r9c7 (4)r9c7 - (4)r7c79 = (4-5)r7c4 = r4c4 - r4c9 = (5-4)r6c8 = (4)r56c7                        - (  4)r9c7 (9)r9c7   resulting Single`

Code: Select all
` +-----------------------------------------------------------------------+ |  4      69     27     |  6789   1269   25678  |  178    158    3      | |  39     369    5      |  46789  169    4678   |  2      148    1478   | |  1      8      27     |  3      25     247    |  6      9      457    | |-----------------------+-----------------------+-----------------------| |  7      13     168    |  156    4      9      |  138    2      158    | |  5      2      146    |  16     8      36     |  134    7      9      | |  39     1349   148    |  2      7      35     |  1348   13458  6      | |-----------------------+-----------------------+-----------------------| |  2      7      3      |  4589   59     1      |  489    6      48     | |  6      14     9      |  478    23     2478   |  5      1348   1478   | |  8      5      14     |  4679   369    467    |  9      134    2      | +-----------------------------------------------------------------------+ # 98 eliminations remain Basics`

Code: Select all
` +--------------------------------------------------------------+ |  4     69    2     |  689   1     568   |  7     58    3     | |  39    369   5     |  478   69    478   |  2     48    1     | |  1     8     7     |  3     25    24    |  6     9     45    | |--------------------+--------------------+--------------------| |  7     13    168   |  156   4     9     |  138   2     58    | |  5     2     146   |  16    8     36    |  134   7     9     | |  39    1349  148   |  2     7     35    |  1348  45    6     | |--------------------+--------------------+--------------------| |  2     7     3     |  59    59    1     |  48    6     48    | |  6     14    9     |  48    23    248   |  5     13    7     | |  8     5     14    |  467   36    467   |  9     13    2     | +--------------------------------------------------------------+ # 60 eliminations remain r45c34  <16> UR via s-link              <> 1    r4c3   sufficient -- 1 of 3 r45c34  <16> UR via s-link              <> 1    r5c3   sufficient -- 2 of 3 r46c37  <18> UR via s-link + (1=3)r4c2  <> 1    r6c3   sufficient -- 3 of 3`
daj95376
2014 Supporter

Posts: 2624
Joined: 15 May 2006

### Re: Suggest A Move (SAM#5)

Just for giggles, here is a ridiculously long non-net-based solution. I don't think I've ever come across a puzzle of this relatively lower difficulty rating that had all sorts of non-net based moves available, but which just wouldn't die. Ordinarily, with puzzles like this, most chains/moves will result in useful exclusions and/or placements. This thing not only didn't follow those rules, it also offered up a number of exclusions and even a few placements that led nowhere. I'll post a net-based solution later.

The final move here is of some interest since a BW pattern offers up a simple SIS.

1. (7)r3c3=r1c3-r1c7=(7-9)r9c7=r7c7-(9=5)r7c5-(5=2)r3c5 => r3c3<>2=7, r1c3=2
2. (5)r1c6=r3c5-(5=9)r7c5-r7c7=(9-7)r9c7=(7)r1c7 => r1c6<>7
-> Kite: (7)r1c47, (7)r28c9 => r8c4<>7
3. (6=3)r5c6-(3=5)r6c6-r4c4=r7c4-(5=9)r7c5-als(9=16)r12c5 => r12c6<>6
4. (8=4)r8c4-r8c2=r6c2-als(4=16)r5c34-(6=3)r5c6-(3=5)r6c6-(5=8)r1c6 => r12c4<>8, r8c6<>8
5. (4)r8c2=r6c2-als(4=16)r5c34-(6)r5c6=grp(6)r45c4-als(6=479)r129c4 => r8c4<>4=8
6. (4)r8c2=r6c2-r5c3=(4-3)r5c7=r5c6-(3=5)r6c6-r4c4=(4-5)r7c4=grp(4)r7c79 => r8c89<>4
7. (7)r8c9=(7-2)r8c6=r3c6-(2=5)r3c5-r7c5=(5-4)r7c4=grp(4)r7c79-als(4=13)r89c8 => r8c9<>1=7, r1c7=7
-> np(16)r1c24: r1c5=1, np(24)r38c6: r29c6<>4
8. (1=3)r8c8-(2=3)r5c5-(2=4)r8c6-r4c4=grp(4)r7c79-als(4=13)r89c8 => r2c8<>1 -> r2c9=1

A 5-sided pattern of conjugate 4s is impossible so either (4)r7c7 or (4)r9c4 have to be true.

9. Broken Wing (aka Guardian) pattern:(4)r2c48, (4)r37c9, (4)r7c4, sis: (4)r7c7=(4)r9c4
(4)r5c3=r5c7-[(4)r7c7=(4)r9c4] => r9c3<>4=1
stte
DonM
2013 Supporter

Posts: 475
Joined: 13 January 2008

### Re: Suggest A Move (SAM#5)

Thanks to Blue's post, here is a short complex one-stepper using only 10 SIS:
Code: Select all
`+----------------+------------------------+------------------------+| 4   69    (27) | 6789   19(26)  (25678) | 18(7)    158    3      || 39  369   5    | 46789  19(6)   4678    | 2        148    148(7) || 1   8     27   | 3      -5(2)   247     | 6        9      45(7)  |+----------------+------------------------+------------------------+| 7   13    168  | 156    4       9       | 138      2      158    || 5   2     146  | 16     8       36      | 134      7      9      || 39  1349  148  | 2      7       35      | 1348     13458  6      |+----------------+------------------------+------------------------+| 2   7     3    | 4589   (59)    1       | 48(9)    6      48     || 6   14    9    | 478    (23)    (278)   | 5        1348   148(7) || 8   5     14   | 4679   9(36)   467     | 134(79)  134    2      |+----------------+------------------------+------------------------+`
Chain[10] : Kraken Cell (25678)r1c6 :=> [5r7c5==2r3c5==5r1c6]-5r3c5

The Forbidding Matrix :
Code: Select all
`5r3c55r7c5=9r7c5      9r7c7=9r9c7            7r9c7=7r1c7                  7r23c9=7r8c9                  7r1c3========2r1c32r3c5==========================2r1c5=2r8c5                         7r8c6=======2r8c6=8r8c6                                     3r8c5=======3r9c5                                                 6r9c5=6r12c55r1c6=============7r1c6========2r1c6=======8r1c6=======6r1c6`
Rows 2->7 allow to write the following derived SIS :

5r7c5==7r1c7
5r7c5==7r8c9
5r7c5==2r1c3
[5r7c5==2r3c5]=2r8c5

Reading the FM from the last row :

2r1c6-2r1c3==5r7c5
||
5r1c6
||
6r1c6-6r12c5=(6-3)r9c5=3r8c5-2r8c5=[2r3c5==5r7c5]
||
7r1c6-7r1c7==5r7c5
||
8r1c6-8r8c6=*[5r7c5==7r8c9-(7=*2)r8c6-2r8c5=[2r3c5==5r7c5]]

As the analysis of the puzzle shows r1c7=7, the FM can be simplified by removing rows 2->6 and columns 2->6 :

Kraken Cell (568)r1c6 :=> [2r3c5==5r1c6]-5r3c5
Code: Select all
`5r3c52r3c5=2r8c5      2r8c6=8r8c6      3r8c5=======3r9c5                  6r9c5=6r12c55r1c6=======8r1c6=======6r1c6`
5r1c6
||
6r1c6-6r12c5=(6-3)r9c5=3r8c5-2r8c5=2r3c5
||
8r1c6-(8=2)r8c6-2r8c5=2r3c5

or, on a single line :

5r1c6=*[(2=8)r8c6-(8=*6)r1c6-6r12c5=(6-3)r9c5=3r8c5]-2r8c5=2r3c5 :=> -5r3c5

which is equivalent but not as pretty as Blue's step.
JC Van Hay

Posts: 719
Joined: 22 May 2010

Next

Return to Puzzles