Sue de Coq

Post puzzles for others to solve here.

Sue de Coq

Postby urhegyi » Sun Mar 21, 2021 8:42 pm

I just created this sudoku and the first advanced step after the basics is suggested a Sue de Coq move by Hodoku.
Is there another (better) alternative to start with, or would it complicate the solvepath more then needed?
qualify.png
qualify.png (14.63 KiB) Viewed 703 times

Code: Select all
1..5....2.2.7...3...3.6.1..........8.4..5..9.6.2........6...4...5...3.7.8....4..9
urhegyi
 
Posts: 748
Joined: 13 April 2020

Re: Sue de Coq

Postby pjb » Mon Mar 22, 2021 2:52 am

I start with double ALS (similar to Sue de Coq)
Double ALS at r578c9 and r1c8, r2c9, r3c89, with X-Z values 6 and 7 => -137 r6c9, -8 r1c7, -58 r2c7, -8 r7c8,
Simple chain: (7)r1c3 = (7)r1c7 - (7)r3c9 = (7)r5c9 => -7 r5c3
Continuous chain: (1)r5c9 = r46c8 - (1=2)r7c8 - r7c1 = (2-4)r8c1 = r8c3 - r1c3 = (4-8)r1c8 = r3c8 - r3c2 = r6c2 - (8=1)r5c3 - r5c9 => -1 r9c8, -2 r7c45, -4 r2c3, -8 r3c46, -1 r5c46, -9 r8c1
Simple chain: (1=8)r5c3 - (8)r6c2 = (8)r3c2 - (8)r3c8 = (8)r1c8 - (8=9)r1c6 - (9)r1c7 = (9-6)r2c7 = (6)r2c9 - (6=1)r8c9 => -1 r5c9, r8c3; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Sue de Coq

Postby denis_berthier » Mon Mar 22, 2021 5:00 am

urhegyi wrote:I just created this sudoku and the first advanced step after the basics is suggested a Sue de Coq move by Hodoku.
Is there another (better) alternative to start with, or would it complicate the solvepath more then needed?
qualify.png

Code: Select all
1..5....2.2.7...3...3.6.1..........8.4..5..9.6.2........6...4...5...3.7.8....4..9

SER 8.5
Resolution state after Singles and whips[1]:
Code: Select all
   1         6         4789      5         3         89        789       48        2         
   459       2         4589      7         1489      189       5689      3         456       
   4579      789       3         2489      6         289       1         458       457       
   3579      1379      1579      12349     1249      12679     2356      1246      8         
   37        4         178       1238      5         12678     2367      9         1367     
   6         13789     2         13489     1489      1789      357       145       13457     
   2379      1379      6         1289      12789     5         4         128       13       
   249       5         149       12689     1289      3         268       7         16       
   8         137       17        126       127       4         2356      1256      9

From this point, Sue de Coq is undoubtedly not the simplest available pattern.
Indeed, only short chains are enough to get the solution:
Code: Select all
z-chain[3]: r9n5{c7 c8} - c8n6{r9 r4} - c8n2{r4 .} ==> r9c7 ≠ 2
biv-chain[4]: r1c8{n4 n8} - r1c6{n8 n9} - b3n9{r1c7 r2c7} - b3n6{r2c7 r2c9} ==> r2c9 ≠ 4
finned-x-wing-in-columns: n4{c9 c4}{r3 r6} ==> r6c5 ≠ 4
z-chain[4]: c9n5{r3 r6} - c9n4{r6 r3} - b3n7{r3c9 r1c7} - c7n9{r1 .} ==> r2c7 ≠ 5
t-whip[4]: c9n4{r6 r3} - r1c8{n4 n8} - r3c8{n8 n5} - c9n5{r3 .} ==> r6c9 ≠ 7, r6c9 ≠ 3, r6c9 ≠ 1
biv-chain[2]: c9n7{r5 r3} - r1n7{c7 c3} ==> r5c3 ≠ 7
z-chain[4]: r9c3{n1 n7} - r1n7{c3 c7} - c9n7{r3 r5} - c9n1{r5 .} ==> r9c8 ≠ 1
whip[4]: r1c8{n8 n4} - r3c8{n4 n5} - c9n5{r3 r6} - c9n4{r6 .} ==> r7c8 ≠ 8
hidden-single-in-a-block ==> r8c7 = 8
whip[1]: b9n2{r9c8 .} ==> r4c8 ≠ 2
t-whip[3]: c7n9{r2 r1} - r1c6{n9 n8} - r2n8{c6 .} ==> r2c3 ≠ 9
biv-chain[4]: r7n8{c4 c5} - b8n7{r7c5 r9c5} - r9c3{n7 n1} - r5c3{n1 n8} ==> r5c4 ≠ 8
finned-x-wing-in-rows: n8{r5 r2}{c3 c6} ==> r3c6 ≠ 8, r1c6 ≠ 8
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Sue de Coq

Postby Leren » Mon Mar 22, 2021 6:21 am

Code: Select all
*-------------------------------------------------------*
| 1    6     489-7 | 5     3     89    | 79   48   2    |
| 459  2     4589  | 7     1489  189   | 69   3    456  |
| 4579 789   3     | 2489  6     289   | 1    458  457  |
|------------------+-------------------+----------------|
| 3579 1379  1579  | 12349 1249  12679 | 2367 1246 8    |
| 37   4     18    | 1238  5     12678 | 2367 9    1367 |
| 6    13789 2     | 13489 1489  1789  | 357  145  45   |
|------------------+-------------------+----------------|
| 2379 1379  6     | 1289  12789 5     | 4    12   13   |
| 249  5     149   | 1269  129   3     | 8    7    16   |
| 8    137   17    | 126   127   4     | 2356 1256 9    |
*-------------------------------------------------------*

Same first 2 moves as Phil, then this chain. (7=9) r1c7 - (9=8) r1c6 - r1c8 = r3c8 - r3c2 = r6c2 - (8=1) r5c3 - (1=7) r9c3 = -7 r1c3; stte

Can't mark up the PM properly as I had a nasty accident today and can only type one handed.

Leren.
Leren
 
Posts: 5117
Joined: 03 June 2012

Re: Sue de Coq

Postby denis_berthier » Mon Mar 22, 2021 7:03 am

.
I checked if there was a 1-step elimination.
I found 6 W1-ANTI-BACKDOORS: n1r9c3 n7r3c9 n6r2c7 n9r1c7 n8r1c6 n7r1c3, 3 of which give a 1-step elimination, but require rather long whips:

Code: Select all
whip[7]: c7n9{r2 r1} - r1c6{n9 n8} - r2n8{c6 c3} - c3n5{r2 r4} - c3n9{r4 r8} - c3n4{r8 r1} - r1n7{c3 .} ==> r2c7 ≠ 6
stte

whip[8]: r1n7{c7 c3} - r1n4{c3 c8} - c9n4{r3 r6} - c9n5{r6 r2} - r3c8{n5 n8} - c2n8{r3 r6} - r5c3{n8 n1} - r9c3{n1 .} ==> r3c9 ≠ 7
stte

whip[9]: r1c6{n9 n8} - r1c8{n8 n4} - r1c3{n4 n7} - r9c3{n7 n1} - r5c3{n1 n8} - c2n8{r6 r3} - r3c8{n8 n5} - c9n5{r3 r6} - c9n4{r6 .} ==> r1c7 ≠ 9
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Sue de Coq

Postby denis_berthier » Mon Mar 22, 2021 7:41 am

.
I tried 2-step solutions.
I found 1942 W1-antibackdoor-pairs, 314 of which give rise to a 2-step solution in W8. However, only four of then allow to lower the maximum length of chains wrt my simplest 1-step solution above.

Code: Select all
whip[4]: r1c8{n8 n4} - r3c8{n4 n5} - c9n5{r3 r6} - c9n4{r6 .} ==> r7c8 ≠ 8
hidden-single-in-a-block ==> r8c7 = 8
whip[6]: r1c6{n9 n8} - r2n8{c6 c3} - c3n5{r2 r4} - c3n9{r4 r8} - c3n4{r8 r1} - r1n7{c3 .} ==> r1c7 ≠ 9
stte

whip[4]: r1c8{n8 n4} - r3c8{n4 n5} - c9n5{r3 r6} - c9n4{r6 .} ==> r7c8 ≠ 8
hidden-single-in-a-block ==> r8c7 = 8
whip[6]: r1n7{c7 c3} - r9c3{n7 n1} - r5c3{n1 n8} - c2n8{r6 r3} - c8n8{r3 r1} - r1n4{c8 .} ==> r3c9 ≠ 7
stte

whip[4]: r1c8{n8 n4} - r3c8{n4 n5} - c9n5{r3 r6} - c9n4{r6 .} ==> r2c7 ≠ 8
whip[6]: r1c6{n9 n8} - r2n8{c6 c3} - c3n5{r2 r4} - c3n9{r4 r8} - c3n4{r8 r1} - r1n7{c3 .} ==> r1c7 ≠ 9
stte

whip[6]: r1n7{c3 c7} - c7n9{r1 r2} - r2n6{c7 c9} - r8c9{n6 n1} - r7c9{n1 n3} - r5c9{n3 .} ==> r5c3 ≠ 7
whip[6]: c7n9{r2 r1} - r1c6{n9 n8} - r2n8{c6 c3} - r5c3{n8 n1} - r9c3{n1 n7} - r1n7{c3 .} ==> r2c7 ≠ 6
stte


I'm curious to see if anyone can find a 3-step solution with no chain longer than 6.
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Sue de Coq

Postby Cenoman » Mon Mar 22, 2021 2:01 pm

Code: Select all
 +------------------------+--------------------------+------------------------+
 |  1      6      A489-7  |  5       3       89      |da79-8  B48     2       |
 |  459    2       4589   |  7       1489    189     |da569-8  3     b456     |
 |  4579  D789     3      |  2489    6       289     |  1     C458  cb457     |
 +------------------------+--------------------------+------------------------+
 |  3579   1379    1579   |  12349   1249    12679   |  2367   1246   8       |
 |  37     4      F178    |  1238    5       12678   |  2367   9      1367    |
 |  6     E13789   2      |  13489   1489    1789    |  357    145   b13457   |
 +------------------------+--------------------------+------------------------+
 |  2379   1379    6      |  1289    12789   5       |  4      128    13      |
 |  249    5       149    |  12689   1289    3       |  268    7      16      |
 |  8      137    F17     |  126     127     4       |  2356   1256   9       |
 +------------------------+--------------------------+------------------------+

1. (96)r12c7 = (645)r236c9 - (7)r3c9 = (79)r12c7 => -8r12c7 + other loop eliminations; (+8r8c7)
2. (4)r1c3 = (4-8)r1c8 = r3c8 - r3c2 = r12c3 - (8=17)r59c3 => -7 r1c3; ste

Added:
Obviously, the above two-step solution suggest a single step using the kraken box (8)b3:
Kraken box (8)b3p1248
(8)r1c8 - (8=97)r1c67
(8)r3c8 - r3c2 = r6c2 - (8=17)r59c3 - r1c3 =(7)r1c7
(8-96)r12c7 = (645)r236c9
=> -7 r3c9; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: Sue de Coq

Postby jco » Mon Mar 22, 2021 3:33 pm

After basics

Code: Select all
.---------------------------------------------------------------.
| 1     6      4789 | 5      3      89    | 789  ea48     2     |
| 459   2      4589 | 7      1489   189   | 5689   3     d456   |
| 4579  789    3    | 2489   6      289   | 1     e458   d457   |
|-------------------+---------------------+---------------------|
| 3579  1379   1579 | 12349  1249   12679 | 2367  b1246   8     |
| 37    4      178  | 1238   5      12678 | 2367   9      1367  |
| 6     13789  2    | 13489  1489   1789  | 357   b145   c13457 |
|-------------------+---------------------+---------------------|
| 2379  1379   6    | 1289   12789  5     | 4      12-8   13    |
| 249   5      149  | 12689  1289   3     | 268    7      16    |
| 8     137    17   | 126    127    4     | 2356   1256   9     |
'---------------------------------------------------------------'

1. (8=4)r1c8-r46c8=(4-5)r6c9=r23c9-(5=48)r13c8 => -8 r7c8 (+8 r8c7)


Code: Select all
.-------------------------------------------------------------------.
|  1     6      g789-4 | 5      3      89    | f79     48     2     |
|  459   2       4589  | 7      1489   189   | f569    3     e456   |
|  4579  789     3     | 2489   6      289   |  1      458    457   |
|----------------------+---------------------+----------------------|
|  3579  1379    1579  | 12349  1249   12679 |  2367   1246   8     |
|  37    4       178   | 1238   5      12678 |  2367   9      1367  |
|  6     13789   2     | 13489  1489   1789  |  357    145    13457 |
|----------------------+---------------------+----------------------|
| c2379  1379    6     | 1289   12789  5     |  4     d12     13    |
| b249   5      a149   | 1269   129    3     |  8      7     d16    |
|  8     137     17    | 126    127    4     |  2356   1256   9     |
'-------------------------------------------------------------------'

2. (4)r8c3=(4-2)r8c1=(2)r7c1-(2=16)b9p26-(6)r2c9=(6-97)r12c7=(7)r1c3 => -4 r1c3; lclste
Last edited by jco on Sun May 23, 2021 6:16 pm, edited 1 time in total.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: Sue de Coq

Postby eleven » Tue Mar 23, 2021 12:04 pm

Code: Select all
 *----------------------------------------------------------------------------*
 |  1      6     bd4789   |  5       3     a#89      |e#789   #48     2       |
 |  459    2      c4589   |  7       1489    189     | e5689   3      45+6    |
 |  4579  b789     3      |  2489    6       289     |  1    a#458   #457     |
 |------------------------+--------------------------+------------------------|
 |  3579   1379    1579   |  12349   1249    12679   |  2367   1246   8       |
 |  37     4      c178    |  1238    5       12678   |  2367   9      1367    |
 |  6      13789   2      |  13489   1489    1789    |  357    145    13457   |
 |------------------------+--------------------------+------------------------|
 |  2379   1379    6      |  1289    12789   5       |  4      128    13      |
 |  249    5       149    |  12689   1289    3       |  268    7      16      |
 |  8      137    c17     |  126     127     4       |  2356   1256   9       |
 *----------------------------------------------------------------------------*

5 cells r1c678,r3c89 with 5 digits 45789, only 8 can be twice:
None is twice: 45 in r1c8,r3c89 => r2c9=6
(8r1c6 & 8r3c8) - r1c3,r3c2 = 817r259c3 - r1c3 = (79-6)r12c7 = 6r2c9
=> 6r2c9, stte
eleven
 
Posts: 3152
Joined: 10 February 2008


Return to Puzzles