***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W+SFin
*** Using CLIPS 6.32-r779
***********************************************************************************************
169 candidates, 1008 csp-links and 1008 links. Density = 7.1%
whip[1]: r1n3{c9 .} ==> r3c9 ≠ 3
whip[1]: b5n9{r5c6 .} ==> r5c9 ≠ 9, r5c1 ≠ 9, r5c2 ≠ 9, r5c7 ≠ 9, r5c8 ≠ 9
whip[1]: b6n9{r6c9 .} ==> r1c9 ≠ 9, r2c9 ≠ 9, r3c9 ≠ 9, r9c9 ≠ 9
whip[1]: b4n9{r6c1 .} ==> r1c1 ≠ 9, r2c1 ≠ 9, r3c1 ≠ 9
whip[1]: r3n9{c6 .} ==> r2c4 ≠ 9, r2c6 ≠ 9
naked-pairs-in-a-block: b2{r2c4 r3c5}{n7 n8} ==> r3c4 ≠ 8, r3c4 ≠ 7, r1c5 ≠ 8, r1c5 ≠ 7
finned-x-wing-in-columns: n2{c3 c8}{r5 r9} ==> r9c9 ≠ 2
biv-chain[4]: r9c3{n2 n8} - r1c3{n8 n6} - r1c5{n6 n5} - r9n5{c5 c1} ==> r9c1 ≠ 2
z-chain[5]: r9n5{c1 c5} - r1c5{n5 n6} - r1c3{n6 n8} - c7n8{r1 r5} - r4n8{c9 .} ==> r9c1 ≠ 8
whip[5]: c5n6{r9 r1} - r1c3{n6 n8} - r3n8{c1 c9} - r4n8{c9 c1} - r7n8{c1 .} ==> r9c5 ≠ 8
z-chain[6]: r8n6{c9 c6} - r2c6{n6 n5} - r2c9{n5 n7} - b2n7{r2c4 r3c5} - r3n8{c5 c1} - r4n8{c1 .} ==> r8c9 ≠ 8
t-whip-rn[6]: r9n5{c1 c5} - r9n6{c5 c9} - r8n6{c9 c6} - r2n6{c6 c1} - r2n1{c1 c2} - r9n1{c2 .} ==> r9c1 ≠ 3
whip[6]: r4n8{c9 c1} - b7n8{r8c1 r8c2} - b1n8{r1c2 r1c3} - c7n8{r1 r5} - c7n4{r5 r1} - c2n4{r1 .} ==> r9c9 ≠ 8
whip[8]: r1n3{c8 c9} - c9n5{r1 r5} - c9n4{r5 r3} - c9n7{r3 r2} - b2n7{r2c4 r3c5} - r3c1{n7 n8} - r1c3{n8 n6} - r1c5{n6 .} ==> r1c8 ≠ 5
z-chain[4]: r8n6{c9 c6} - r2c6{n6 n5} - c8n5{r2 r5} - c8n2{r5 .} ==> r8c9 ≠ 2
whip[7]: r9n3{c9 c2} - r5n3{c2 c1} - r5n6{c1 c3} - r1c3{n6 n8} - r1c8{n8 n9} - r1c7{n9 n4} - r1c2{n4 .} ==> r8c8 ≠ 3
z-chain[5]: r8c8{n8 n2} - c4n2{r8 r7} - c4n8{r7 r2} - r3n8{c5 c9} - r4n8{c9 .} ==> r8c1 ≠ 8
whip[5]: c8n3{r1 r9} - r9n9{c8 c7} - c7n8{r9 r5} - c3n8{r5 r9} - r9n2{c3 .} ==> r1c8 ≠ 8
whip[6]: r4n8{c1 c9} - r3n8{c9 c5} - r7n8{c5 c4} - c4n2{r7 r8} - r8c8{n2 n8} - r2n8{c8 .} ==> r1c1 ≠ 8
whip[8]: r4n8{c1 c9} - r3n8{c9 c5} - r7n8{c5 c4} - c4n2{r7 r8} - r8c8{n2 n8} - r2n8{c8 c2} - r1c3{n8 n6} - r5n6{c3 .} ==> r5c1 ≠ 8
whip[9]: r5c2{n8 n3} - r9c2{n3 n1} - r9c1{n1 n5} - r9c5{n5 n6} - r8n6{c6 c9} - c9n1{r8 r7} - c5n1{r7 r5} - c5n7{r5 r3} - b2n8{r3c5 .} ==> r2c2 ≠ 8
whip[2]: r4n8{c9 c1} - b1n8{r3c1 .} ==> r1c9 ≠ 8
whip[6]: r4n8{c9 c1} - r3n8{c1 c5} - r2n8{c4 c8} - r8c8{n8 n2} - c4n2{r8 r7} - r7n8{c4 .} ==> r5c9 ≠ 8
whip-cn[7]: c8n3{r9 r1} - c8n9{r1 r2} - c2n9{r2 r1} - c2n4{r1 r8} - c2n8{r8 r5} - c3n8{r5 r1} - c7n8{r1 .} ==> r9c8 ≠ 8
t-whip[6]: r2n1{c1 c2} - r2n9{c2 c8} - r1c8{n9 n3} - r9c8{n3 n2} - c3n2{r9 r5} - r5n6{c3 .} ==> r2c1 ≠ 6
singles ==> r2c6 = 6, r1c5 = 5, r7c6 = 5, r9c1 = 5, r9c5 = 6, r8c9 = 6
t-whip[7]: r2n1{c1 c2} - r2n9{c2 c8} - r1c8{n9 n3} - r9c8{n3 n2} - c3n2{r9 r5} - r6c1{n2 n9} - r4c1{n9 .} ==> r2c1 ≠ 8
biv-chain[4]: r2c1{n1 n7} - c4n7{r2 r5} - r5c5{n7 n1} - b8n1{r7c5 r8c6} ==> r8c1 ≠ 1
biv-chain[5]: c5n7{r3 r5} - r5n1{c5 c6} - r8n1{c6 c2} - r8n4{c2 c1} - r3n4{c1 c9} ==> r3c9 ≠ 7
z-chain[5]: c9n1{r7 r9} - c9n3{r9 r1} - r1n7{c9 c1} - r3n7{c1 c5} - c5n8{r3 .} ==> r7c9 ≠ 8
t-whip[5]: r9n2{c3 c8} - c8n3{r9 r1} - c8n9{r1 r2} - r2c2{n9 n1} - b7n1{r9c2 .} ==> r7c1 ≠ 2
z-chain-rc[5]: r8c6{n3 n1} - r7c5{n1 n8} - r7c1{n8 n1} - r9c2{n1 n8} - r5c2{n8 .} ==> r8c2 ≠ 3
z-chain[5]: r7n2{c4 c9} - r6n2{c9 c1} - c1n9{r6 r4} - c1n8{r4 r3} - c5n8{r3 .} ==> r7c4 ≠ 8
swordfish-in-rows: n8{r3 r4 r7}{c5 c9 c1} ==> r2c9 ≠ 8
z-chain[5]: c9n8{r4 r3} - r3n4{c9 c1} - r8n4{c1 c2} - r8n8{c2 c4} - r2n8{c4 .} ==> r5c8 ≠ 8
x-wing-in-columns: n8{c4 c8}{r2 r8} ==> r8c2 ≠ 8
biv-chain[3]: r3c9{n4 n8} - b6n8{r4c9 r5c7} - b6n4{r5c7 r5c9} ==> r1c9 ≠ 4
z-chain[6]: r6n2{c1 c9} - c9n9{r6 r4} - b6n8{r4c9 r5c7} - b9n8{r9c7 r8c8} - c8n2{r8 r9} - c3n2{r9 .} ==> r5c1 ≠ 2
z-chain[7]: c9n1{r7 r9} - c9n3{r9 r1} - c9n7{r1 r2} - r2c1{n7 n1} - r7n1{c1 c5} - r8c6{n1 n3} - r7c4{n3 .} ==> r7c9 ≠ 2
hidden-single-in-a-row ==> r7c4 = 2
whip[1]: b8n3{r8c6 .} ==> r8c1 ≠ 3
whip[1]: b9n2{r9c8 .} ==> r5c8 ≠ 2
singles ==> r5c8 = 5, r2c9 = 5, r1c9 = 7, r1c8 = 3
hidden-pairs-in-a-row: r9{n1 n3}{c2 c9} ==> r9c2 ≠ 8
biv-chain[3]: r9c7{n8 n9} - r1n9{c7 c2} - c2n8{r1 r5} ==> r5c7 ≠ 8
stte