I just want to see, is it possible to construct a "sudoku" puzzle on such a cube, such that all 6 4x4 faces and all 12 lines running around groups of 4 faces contain the cells 1 to 16? In other words:
- Code: Select all
a01 a02 a03 a04
a05 a06 a07 a08
a09 a10 a11 a12
a13 a14 a15 a16
b01 b02 b03 b04 c01 c02 c03 c04 d01 d02 d03 d04 e01 e02 e03 e04
b05 b06 b07 b08 c05 c06 c07 c08 d05 d06 d07 d08 e05 e06 e07 e08
b09 b10 b11 b12 c09 c10 c11 c12 d09 d10 d11 d12 e09 e10 e11 e12
b13 b14 b15 b16 c13 c14 c15 c16 d13 d14 d15 d16 e13 e14 e15 e16
f01 f02 f03 f04
f05 f06 f07 f08
f09 f10 f11 f12
f13 f14 f15 f16
The follow lines all contain the numbers 1 to 16:
b[01..04]+c[01..04]+d[01..04]+e[01..04]
a[01,05,09,13]+c[01,05,09,13]+f[01,05,09,13]+e[16,12,08,04]
a[13..16]+d[01,05,09,13]+f[04..01]+b[16,12,08,04]
It'd be great fun to make such a Rubik's Revenge cube with a full sudoku grid replacing the coloured squares!
PS: To impose greater restrictions, perhaps we could force each of the 6 face squares to be 4x4 magic squares!