- Code: Select all
123|456|789
45*|***|***
***|AAA|BBB
-----------
2..|...|...
...|...|...
...|...|...
-----------
...|...|...
...|...|...
...|...|...
starting with A then B cell there is precisely 360 valid permutations to cycle through for digits
- Code: Select all
123|456|789
45F|DDD|EEE
CCC|AAA|BBB
-----------
2..|...|...
...|...|...
...|...|...
-----------
...|...|...
...|...|...
...|...|...
this reduces C,D,E sectors to 1 set of 3 numbers each with 6 possible arrangement {permutations}
and cell F as a single digit choice.
the first band has exactly 360 * 6*6*6 *1 different unique arrangements
specifically : = 77,760 different unique arrangements
add to the mixed digit cycling (1..9) and you have 77,760 * 9! ==> 77,760 * 362,880 =>> 28,217,548,800 arrangements for band 1.
2nd stage
- Code: Select all
123|456|789
45F|DDD|EEE
CCC|AAA|BBB
-----------
2HH|FFF|GGG
...|...|...
...|...|...
-----------
...|...|...
...|...|...
...|...|...
cycle the combinations of 3 digits from 13456789 for section F cycling each of the 6 potential permutation of that combination removing line of sight permutations that are invalid.
cycle the combinations of 3 digits from (13456789 - selection F) for position G then cycle each of the 6 potential permutations
that leaves H locations as pair of digits {fixed or not}
this is where we note a problem carrying forward
best illustrated with examples.
Stage three problem and solution:
- Code: Select all
123|456|789
45F|DDD|EEE
CCC|AAA|BBB
-----------
2HH|FFF|GGG
***|***|***
***|iii|***
-----------
...|...|...
...|...|...
...|...|...
the problem arise from selection of combination of valid numbers In i
- Code: Select all
.---------------------------.---------------------.------------------------.
| 1 2 3 | 4 5 6 | 7 8 9 |
| 4 5 6789 | 19 17 179 | 23 236 236 |
| 679 679 679 | 3 2 8 | 4 1 5 |
:---------------------------+---------------------+------------------------:
| 2 13 1 | 7 9 4 | 6 5 8 |
| 568 68 568 | 12 13 123 | 9 479 47 |
| 79 479 479 | 6 8 5 | 123 23 123 |
:---------------------------+---------------------+------------------------:
| 356789 1346789 12456789 | 12589 13467 12379 | 123589 234679 123467 |
| 356789 1346789 12456789 | 12589 13467 12379 | 123589 234679 123467 |
| 356789 1346789 12456789 | 12589 13467 12379 | 123589 234679 123467 |
'---------------------------'---------------------'------------------------'
take the above grid, selection i matches selection h's combination set. {658} that leaves a combination set of 123 in the middle row.
when we choose "I" as 123 the middle row is always left as 658! meaning row 4 and 5 can be swapped and will off set the solution count. by a factor of 2.
- Code: Select all
.---------------------------.---------------------.------------------------.
| 1 2 3 | 4 5 6 | 7 8 9 |
| 4 5 6789 | 9 17 179 | 23 236 236 |
| 679 679 679 | 3 2 8 | 4 1 5 |
:---------------------------+---------------------+------------------------:
| 2 13 1 | 7 9 4 | 6 5 8 |
| 79 479 479 | 568 68 5 | 123 23 123 |
| 56 68 568 | 1 3 2 | 9 479 47 |
:---------------------------+---------------------+------------------------:
| 356789 1346789 12456789 | 25689 14678 13579 | 123589 234679 123467 |
| 356789 1346789 12456789 | 25689 14678 13579 | 123589 234679 123467 |
| 356789 1346789 12456789 | 25689 14678 13579 | 123589 234679 123467 |
'---------------------------'---------------------'------------------------'
a solution is the use a Combination set and Fix the last 5 positions for col 1. {instead of permutations.}
that way each potential permutation can only be applied to each row once in rows 5,6 and again for rows 678 if we don't fix all 5 spots we also have a 3! row swap problem in the last band.
Stage three:
- Code: Select all
123|456|789
45F|DDD|EEE
CCC|AAA|BBB
-----------
2HH|FFF|GGG
J**|***|***
J**|iii|***
-----------
K..|...|...
K..|...|...
K..|...|...
J is a fixed Combination of 2 digits selected from ([1,2,3,4,5,6,7,8,9] - ([1,4,2] + [active digit in R3C1 of C if single, else j cannot reduce R3C1 to [] ]))
where R56C1 <> digits from [h] {as H is always a pair of locked digits}
solving R56C1 in sequential order
K is a fixed Combination of 3 digits selected from ([1,2,3,4,5,6,7,8,9] - ([1,4,2] + [active digit in R3C1 of C if single else j+F cannot reduce R3C1 to []] + step above))
solving R789C1 in sequential order
then proceed to select a 3 digit combinations for "i" as ( [1,2,3,4,5,6,7,8,9] - (f + R6C1)) and cycle the 6 permutations.
which leaves all the *'s cells as 1 set of 3 digit each with 1-6 potential permutations.
Stage 4, to be continued.