I'm currently working on the 16*16 version of this puzzle.
Because the 16 symbols are broken into 2 sets of 4 symbols ... It reminded me of the Setdoku.
This variant works as a multiple-in-one puzzle similar to Setdoku
You need a very special 16x16 sudoku grid. The 16 symbols are broken into 2 sets of 4 symbols:
(Symbol/4) & (Symbol Mod 4) ... You can give each set of symbols a different colour to make it more appealing.
you have 16 Rows, 16 Columns & 16 boxes to fill using 16 symbols using the sudoku rules
Each Box is now a 4*4 sudoku puzzle using the 4 symbols created from breaking down the original symbols
Because you have 2 sets of 4 symbols, then each Box has 2 4*4 Sudokus.
I think I managed to create an example
Here is the Special Grid
- Code: Select all
1 6 B G 2 5 C F 3 8 9 E 4 7 A D
C F 2 5 B G 1 6 A D 4 7 9 E 3 8
7 4 D A 8 3 E 9 5 2 F C 6 1 G B
E 9 8 3 D A 7 4 G B 6 1 F C 5 2
2 5 C F 1 6 B G 4 7 A D 3 8 9 E
B G 1 6 C F 2 5 9 E 3 8 A D 4 7
8 3 E 9 7 4 D A 6 1 G B 5 2 F C
D A 7 4 E 9 8 3 F C 5 2 G B 6 1
3 8 9 E 4 7 A D 1 6 B G 2 5 C F
A D 4 7 9 E 3 8 C F 2 5 B G 1 6
5 2 F C 6 1 G B 7 4 D A 8 3 E 9
G B 6 1 F C 5 2 E 9 8 3 D A 7 4
4 7 A D 3 8 9 E 2 5 C F 1 6 B G
9 E 3 8 A D 4 7 B G 1 6 C F 2 5
6 1 G B 5 2 F C 8 3 E 9 7 4 D A
F C 5 2 G B 6 1 D A 7 4 E 9 8 3
Here is the same Grid with Symbol/4, notice that each 4*4 box fulfils the sudoku rules for a 4*4 sudoku puzzle:
- Code: Select all
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3
4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3
4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3
4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2
2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3
4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1
& here is the same grid with Symbol MOD 4, again, look at each 4*4 box
- Code: Select all
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
4 3 2 1 3 4 1 2 2 1 4 3 1 2 3 4
3 4 1 2 4 3 2 1 1 2 3 4 2 1 4 3
2 1 4 3 1 2 3 4 4 3 2 1 3 4 1 2
2 1 4 3 1 2 3 4 4 3 2 1 3 4 1 2
3 4 1 2 4 3 2 1 1 2 3 4 2 1 4 3
4 3 2 1 3 4 1 2 2 1 4 3 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
3 4 1 2 4 3 2 1 1 2 3 4 2 1 4 3
2 1 4 3 1 2 3 4 4 3 2 1 3 4 1 2
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
4 3 2 1 3 4 1 2 2 1 4 3 1 2 3 4
4 3 2 1 3 4 1 2 2 1 4 3 1 2 3 4
1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1
2 1 4 3 1 2 3 4 4 3 2 1 3 4 1 2
3 4 1 2 4 3 2 1 1 2 3 4 2 1 4 3
The 2 grids superimposed
- Code: Select all
11 22 33 44 12 21 34 43 13 24 31 42 14 23 32 41
34 43 12 21 33 44 11 22 32 41 14 23 31 42 13 24
23 14 41 32 24 13 42 31 21 12 43 34 22 11 44 33
42 31 24 13 41 32 23 14 44 33 22 11 43 34 21 12
12 21 34 43 11 22 33 44 14 23 32 41 13 24 31 42
33 44 11 22 34 43 12 21 31 42 13 24 32 41 14 23
24 13 42 31 23 14 41 32 22 11 44 33 21 12 43 34
41 32 23 14 42 31 24 13 43 34 21 12 44 33 22 11
13 24 31 42 14 23 32 41 11 22 33 44 12 21 34 43
32 41 14 23 31 42 13 24 34 43 12 21 33 44 11 22
21 12 43 34 22 11 44 33 23 14 41 32 24 13 42 31
44 33 22 11 43 34 21 12 42 31 24 13 41 32 23 14
14 23 32 41 13 24 31 42 12 21 34 43 11 22 33 44
31 42 13 24 32 41 14 23 33 44 11 22 34 43 12 21
22 11 44 33 21 12 43 34 24 13 42 31 23 14 41 32
43 34 21 12 44 33 22 11 41 32 23 14 42 31 24 13
As you can see the combination gives back the 16 symbols in a different format.
This one probably can be used to create puzzles that do not require a conversion table.
What do you think ?
for N=2 you have a 16*16 puzzle with each box having a 4*4 puzzle
for N=3 you have a 81*81 puzzle with each box having a 9*9 puzzle
for N=4 you have a 256*256 puzzle with each box having a 16*16 puzzles (which could have 4*4 puzzles in it as well, a "Sudoku^3")