I'm currently working on the 16*16 version of this puzzle.
Because the 16 symbols are broken into 2 sets of 4 symbols ... It reminded me of the Setdoku.
This variant works as a  multiple-in-one puzzle similar to Setdoku
You need a very special 16x16 sudoku grid. The 16 symbols are broken into 2 sets of 4 symbols:
(Symbol/4) & (Symbol Mod 4) ... You can give each set of symbols a different colour to make it more appealing.
you have 16 Rows, 16 Columns & 16 boxes to fill using 16 symbols using the sudoku rules
Each Box is now a 4*4 sudoku puzzle using the 4 symbols created from breaking down the original symbols
Because you have 2 sets of 4 symbols, then each Box has 2 4*4 Sudokus.
I think I managed to create an example
Here is the Special Grid
- Code: Select all
 1 6 B G  2 5 C F  3 8 9 E  4 7 A D  
C F 2 5  B G 1 6  A D 4 7  9 E 3 8  
7 4 D A  8 3 E 9  5 2 F C  6 1 G B  
E 9 8 3  D A 7 4  G B 6 1  F C 5 2  
2 5 C F  1 6 B G  4 7 A D  3 8 9 E  
B G 1 6  C F 2 5  9 E 3 8  A D 4 7  
8 3 E 9  7 4 D A  6 1 G B  5 2 F C  
D A 7 4  E 9 8 3  F C 5 2  G B 6 1  
3 8 9 E  4 7 A D  1 6 B G  2 5 C F  
A D 4 7  9 E 3 8  C F 2 5  B G 1 6  
5 2 F C  6 1 G B  7 4 D A  8 3 E 9  
G B 6 1  F C 5 2  E 9 8 3  D A 7 4  
4 7 A D  3 8 9 E  2 5 C F  1 6 B G  
9 E 3 8  A D 4 7  B G 1 6  C F 2 5  
6 1 G B  5 2 F C  8 3 E 9  7 4 D A  
F C 5 2  G B 6 1  D A 7 4  E 9 8 3 
Here is the same Grid with Symbol/4, notice that each 4*4 box fulfils the sudoku rules for a 4*4 sudoku puzzle:
- Code: Select all
 1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4  
3 4 1 2  3 4 1 2  3 4 1 2  3 4 1 2  
2 1 4 3  2 1 4 3  2 1 4 3  2 1 4 3  
4 3 2 1  4 3 2 1  4 3 2 1  4 3 2 1  
1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4  
3 4 1 2  3 4 1 2  3 4 1 2  3 4 1 2  
2 1 4 3  2 1 4 3  2 1 4 3  2 1 4 3  
4 3 2 1  4 3 2 1  4 3 2 1  4 3 2 1  
1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4  
3 4 1 2  3 4 1 2  3 4 1 2  3 4 1 2  
2 1 4 3  2 1 4 3  2 1 4 3  2 1 4 3  
4 3 2 1  4 3 2 1  4 3 2 1  4 3 2 1  
1 2 3 4  1 2 3 4  1 2 3 4  1 2 3 4  
3 4 1 2  3 4 1 2  3 4 1 2  3 4 1 2  
2 1 4 3  2 1 4 3  2 1 4 3  2 1 4 3  
4 3 2 1  4 3 2 1  4 3 2 1  4 3 2 1 
& here is the same grid with Symbol MOD 4, again, look at each 4*4 box
- Code: Select all
 1 2 3 4  2 1 4 3  3 4 1 2  4 3 2 1  
4 3 2 1  3 4 1 2  2 1 4 3  1 2 3 4  
3 4 1 2  4 3 2 1  1 2 3 4  2 1 4 3  
2 1 4 3  1 2 3 4  4 3 2 1  3 4 1 2  
2 1 4 3  1 2 3 4  4 3 2 1  3 4 1 2  
3 4 1 2  4 3 2 1  1 2 3 4  2 1 4 3  
4 3 2 1  3 4 1 2  2 1 4 3  1 2 3 4  
1 2 3 4  2 1 4 3  3 4 1 2  4 3 2 1  
3 4 1 2  4 3 2 1  1 2 3 4  2 1 4 3  
2 1 4 3  1 2 3 4  4 3 2 1  3 4 1 2  
1 2 3 4  2 1 4 3  3 4 1 2  4 3 2 1  
4 3 2 1  3 4 1 2  2 1 4 3  1 2 3 4  
4 3 2 1  3 4 1 2  2 1 4 3  1 2 3 4  
1 2 3 4  2 1 4 3  3 4 1 2  4 3 2 1  
2 1 4 3  1 2 3 4  4 3 2 1  3 4 1 2  
3 4 1 2  4 3 2 1  1 2 3 4  2 1 4 3
The 2 grids superimposed
- Code: Select all
 11 22 33 44  12 21 34 43  13 24 31 42  14 23 32 41  
34 43 12 21  33 44 11 22  32 41 14 23  31 42 13 24  
23 14 41 32  24 13 42 31  21 12 43 34  22 11 44 33  
42 31 24 13  41 32 23 14  44 33 22 11  43 34 21 12  
12 21 34 43  11 22 33 44  14 23 32 41  13 24 31 42  
33 44 11 22  34 43 12 21  31 42 13 24  32 41 14 23  
24 13 42 31  23 14 41 32  22 11 44 33  21 12 43 34  
41 32 23 14  42 31 24 13  43 34 21 12  44 33 22 11  
13 24 31 42  14 23 32 41  11 22 33 44  12 21 34 43  
32 41 14 23  31 42 13 24  34 43 12 21  33 44 11 22  
21 12 43 34  22 11 44 33  23 14 41 32  24 13 42 31  
44 33 22 11  43 34 21 12  42 31 24 13  41 32 23 14  
14 23 32 41  13 24 31 42  12 21 34 43  11 22 33 44  
31 42 13 24  32 41 14 23  33 44 11 22  34 43 12 21  
22 11 44 33  21 12 43 34  24 13 42 31  23 14 41 32  
43 34 21 12  44 33 22 11  41 32 23 14  42 31 24 13
As you can see the combination gives back the 16 symbols in a different format.
This one probably can be used to create puzzles that do not require a conversion table.
What do you think ?
for N=2 you have a 16*16 puzzle with each box having a 4*4 puzzle
for N=3 you have a 81*81 puzzle with each box having a 9*9 puzzle
for N=4 you have a 256*256 puzzle with each box having a 16*16 puzzles (which could have 4*4 puzzles in it as well, a "Sudoku^3")