Alternatively the elimination can be derived from a broken wing with 4 guardians:
- Code: Select all
+---------+---------+---------+
| . 5 . | . . . | . . 5 |
|#5 . . | . G5 . |#5 . . |
| . 5 . | . 5 5 | . . 5 |
+---------+---------+---------+
|#5 . . |G5 . . | . . #5 |
| . 5 . | . . 5 |#5 . . |
|G5 . . | . -5 . |G5 . . |
+---------+---------+---------+
| . . . | . . . | . 5 . |
| . . 5 | . . . | . . . |
| . . . | 5 5 5 | . . . |
+---------+---------+---------+
Also, (inspired by kozo's post) i saw a potential 7 cells oddegon 25 in the # marked cells.
- Code: Select all
+----------------+----------------+----------------+
| 1 56 3 | 8 9 7 | 4 2 56 |
|#25 7 8 | 4 #25+3 6 | 59 39 1 |
| 9 256 4 | 1 235 25 | 8 7 356 |
+----------------+----------------+----------------+
|#25+8 4 6 |*25 7 9 | 1 38 35 |
| 3 #25 7 | 6 1 258 |#25+9 89 4 |
| 258 1 9 | 3 #25+8 4 |#25 6 7 |
+----------------+----------------+----------------+
| 6 9 2 | 7 4 1 | 3 5 8 |
| 4 8 5 | 9 6 3 | 7 1 2 |
| 7 3 1 | 25 258 258 | 6 4 9 |
+----------------+----------------+----------------+
If 3 is missing in r2c5, it implies hidden pairs 25 in r56c7, then r4c14, and r6c57 => oddegon.
If 8 is missing in r4c1, it implies hidden pairs 25 in r6c57 and r56c7, then in r2c15 => oddegon.
If 9 is missing in r5c7, it implies hidden pairs 25 in r2c15 and r4c14, then r24c1 and r6c57 => oddegon.
If 8 is missing in r6c5, it implies hidden pairs 25 in r24c1, then r4c14, r56c7 and r2c15 => oddegon.
So the 4 numbers must be true.
[Added:] In other words any missing extra candidate(s) lead to the oddegon by these links:
25r2c15 <-> 25r56c7 <-> 25r4c14 <-> 25r24c1 <-> 25r6c57