Your puzzle needs a couple advanced techniques to solve.
First, there is an
xy-wing (click
this link if you want to learn more):
- Code: Select all
*-----------------------------------------------------------*
| 29 8 4 | 579 1579 157 | 3 6 *27 |
| 6 7 5 | 48 2 3 | 18 148 9 |
| 239 1 39 | 4789 789 6 |*78 248 5 |
|-------------------+-------------------+-------------------|
| 4 569 69 | 3 5678 578 | 2 189 178 |
| 8 3 2 | 1 67 9 | 67 5 4 |
| 7 569 1 | 2 568 4 | 689 89 3 |
|-------------------+-------------------+-------------------|
| 1 4 379 | 6 3789 278 | 5 289 *28 |
| 5 69 679 | 789 4 278 |-189 3 128 |
| 39 2 8 | 59 1359 15 | 4 7 6 |
*-----------------------------------------------------------*
r1c9=2 or 7
=> either r3c7=8 or r7c9=8 or both
=> r8c7 cannot be 8
Next, there is an
ALS-xz (click
this link if you want to learn more):
- Code: Select all
*-----------------------------------------------------------*
| 29 8 4 | 579 1579 157 | 3 6 27 |
| 6 7 5 |-48 2 3 |A18 148 9 |
| 239 1 39 | 4789 789 6 | 78 248 5 |
|-------------------+-------------------+-------------------|
| 4 569 69 | 3 5678 578 | 2 189 178 |
| 8 3 2 | 1 67 9 | 67 5 4 |
| 7 569 1 | 2 568 4 | 689 89 3 |
|-------------------+-------------------+-------------------|
| 1 4 379 | 6 3789 278 | 5 289 28 |
| 5 B69 B679 |B789 4 278 |B19 3 128 |
| 39 2 8 | 59 1359 15 | 4 7 6 |
*-----------------------------------------------------------*
ALS A: r2c7={18}
ALS B: r8c2347={16789}
restricted common: x=1
common: z=8
Therefore r2c4 cannot be 8.
Logical reasoning:
r2c7 and r8c7 cannot both be 1.
If r2c7<>1, r2c7=8 => r2c4<>8
If r8c7<>1, r8c7=9 => r8c2=6 => r8c3=7 => r8c4=8 => r2c4<>8
So either way, r2c4 cannot be 8.
Hence, r2c4=4 and singles solve the rest.
This post is a very comprehensive and useful directory for you to learn most techniques.