Stuck on a puzzle

Post the puzzle or solving technique that's causing you trouble and someone will help

Stuck on a puzzle

Postby Fortesque92 » Fri Sep 15, 2023 8:25 am

https://postimg.cc/wRmvkNb8

Found an empty rectangle in box 9 but then got stuck.
Fortesque92
 
Posts: 94
Joined: 30 June 2020

Re: Stuck on a puzzle

Postby jco » Fri Sep 15, 2023 10:03 pm

Givens:
Code: Select all
*-----------*
 |.6.|9..|..8|
 |.1.|.2.|...|
 |.9.|.38|.2.|
 |---+---+---|
 |4..|...|...|
 |6..|.82|.94|
 |2..|...|18.|
 |---+---+---|
 |...|.4.|.3.|
 |..8|..9|.6.|
 |..5|...|.42|
 *-----------*

After basics: look at the pattern of 7 (the mentioned ER is not needed, but it does no harm).
JCO
jco
 
Posts: 777
Joined: 09 June 2020

Re: Stuck on a puzzle

Postby Fortesque92 » Sat Sep 16, 2023 2:46 am

Sorry I didn't quite understand that, could you elaborate?
Fortesque92
 
Posts: 94
Joined: 30 June 2020

Re: Stuck on a puzzle

Postby jco » Sat Sep 16, 2023 3:42 am

Fortesque92 wrote:Sorry I didn't quite understand that, could you elaborate?

In your current configuration either 7 r1c5 or 7 r5c4 is true. If you prove this, then you can
remove 7 from r46c5.
Another way to solve is to look for a unique rectangle at blocks 4 and 5.
JCO
jco
 
Posts: 777
Joined: 09 June 2020

Re: Stuck on a puzzle

Postby Leren » Sat Sep 16, 2023 7:06 am

There is a relatively painless way to solve this puzzle, that Hodoku chose. It's called Remote Pairs.

Code: Select all
*---------------------------------------------*
|A57 6  2  | 9    B57     4     | 3   1   8   |
| 8  1  3  | 567   2      567   | 4  B57  9   |
|B57 9  4  | 1     3      8     | 6   2  A57  |
|----------+--------------------+-------------|
| 4  8  79 | 3567  169-57 13567 | 2  A57  36  |
| 6  35 1  | 357   8      2     |B57  9   4   |
| 2  35 79 | 4     5679   3567  | 1   8   36  |
|----------+--------------------+-------------|
| 19 2  6  | 578   4      157   | 89  3   157 |
| 3  4  8  | 2     1-57   9     |A57  6   157 |
| 19 7  5  | 368   16     136   | 89  4   2   |
*---------------------------------------------*

After basics, there a lot of cells with 57 in them. I've labelled them A & B. What this indicates is the parity of the 57 cells.

If one 57 cell labelled A is 5, then all the 57 A cells are 5 and the 57 B cells are 7. Similarly if If one 57 cell labelled A is 7, then all the 57 A cells are 7 and the 57 B cells are 5.

The clever thing about this arrangement is that any cell that can see an A and a B 57 cell can't be 57, of which I've indicated two in the PM.

A more complex move than I would normally recommend but it does solve the puzzle in one non-basic move.

You can read up on Remote Pairs on Hodoku here.

Leren
Leren
 
Posts: 5128
Joined: 03 June 2012

Re: Stuck on a puzzle

Postby Fortesque92 » Sat Sep 16, 2023 12:55 pm

Mind blowing, cheers!
Fortesque92
 
Posts: 94
Joined: 30 June 2020

Re: Stuck on a puzzle

Postby jco » Sat Sep 16, 2023 9:51 pm

Leren wrote:There is a relatively painless way to solve this puzzle, that Hodoku chose.
(...)
Leren


Nice! I did see that remote pair (eliminations) but I did not realize they would be enough to finish the puzzle in one step.
So, I looked for something else. My one-stepper is more complex (some fish?):
Code: Select all
.---------------------------------------------------------------------.
| 57     6      2      | 9     a5(7)   4      |  3      1      8      |
| 8      1      3      |b56(7)  2     b56(7)  |  4     c5(7)   9      |
| 57     9      4      | 1      3      8      |  6      2      57     |
|----------------------+----------------------+-----------------------|
| 4      8      79     | 3567   1569-7 13567  |  2     d5(7)   36     |
| 6      35     1      |f35(7)  8      2      | e5(7)   9      4      |
| 2      35     79     | 4      569-7  3567   |  1      8      36     |
|----------------------+----------------------+-----------------------|
| 19     2      6      | 578    4      157    |  89     3      157    |
| 3      4      8      | 2      15-7   9      |f'5(7)   6      157    |
| 19     7      5      | 368    16     136    |  89     4      2      |
'---------------------------------------------------------------------'

(7): r1c5 = r2c46 - r2c8 = r4c8 - r5c7 = r5c4 & r8c7 => -7 r468c5; ste

A simple way to describe: if we don't have (7)r1c5, the we must have (7)r2c46, so no (7)r2c8,
which in turn implies that we must have (7)r4c8, and so we can't have (7)r5c4, and this
finally implies that we must have (7)r5c4 and (7)r8c7. Thus, either (7)r1c5 or [7)r5c4 and (7)r8c7]

Btw, I did not see ER at block 9 [perhaps another move?], but the eliminations were correct
[I mean this regarding the configuration in the link]
JCO
jco
 
Posts: 777
Joined: 09 June 2020


Return to Help with puzzles and solving techniques