Hello again,
Fortesque92,
Fortesque92 wrote:Can anyone be of assistance?
Yes, though I suggest you post questions like this in the
Help with puzzles and solving techniques section (as you've done before).
Anyway, your puzzle is solved with basic techniques only. You only need one (a Hidden Pair), but I actually saw a Claiming opportunity first, so I'll show both moves:
Step 1 (unnecessary):
- Code: Select all
4.3...8......9.7....68.7...5...7.9....29.1........8.5....12.479.34...1.22....6..8
.----------------.-------------------.-----------------.
| 4 7 3 | *26 16 *25 | 8 9 156 |
| 18 258 158 | 346-2 9 45-2 | 7 12 1356 |
| 19 259 6 | 8 13 7 | 23 124 1345 |
:----------------+-------------------+-----------------:
| 5 468 18 | 2346 7 24 | 9 1248 134 |
| 368 468 2 | 9 5 1 | 36 48 7 |
| 1369 469 7 | 2346 36 8 | 236 5 134 |
:----------------+-------------------+-----------------:
| 68 568 58 | 1 2 3 | 4 7 9 |
| 7 3 4 | 5 8 9 | 1 6 2 |
| 2 1 9 | 7 4 6 | 5 3 8 |
'----------------'-------------------'-----------------'
Locked Candidates Type 2 (Claiming): (2)r1\b2 => -2 r2c46
Step 2a:
- Code: Select all
.-----------------.----------------.--------------------.
| 4 7 (3) | 26 16 25 | 8 9 156 |
| 18 258 158 | *36-4 (9) 45 | (7) 12 *36-15 |
| 19 259 (6) | 8 13 7 | 23 124 1345 |
:-----------------+----------------+--------------------:
| 5 468 18 | 2346 7 24 | 9 1248 134 |
| 368 468 2 | 9 5 1 | 36 48 7 |
| 1369 469 7 | 2346 36 8 | 236 5 134 |
:-----------------+----------------+--------------------:
| 68 568 58 | 1 2 (3) | 4 7 9 |
| 7 3 4 | 5 8 9 | 1 (6) 2 |
| 2 1 9 | 7 4 (6) | 5 (3) 8 |
'-----------------'----------------'--------------------'
Hidden Pair (36)r2c49 => -4 r2c4, -15 r2c9; stte (= singles to the end)
Hidden subsets are easiest to spot using the solved cells instead of pencil marks. The bracketed (3)s and (6)s, along with the solved (9) and (7) block all but two cells in row 2, leaving just two cells available for the two digits (3 and 6). Thus, other digits can't fit in those cells and may be eliminated.
Or, if it's easier to see (possible with pencil marks), you could use a Naked Quad on that same row.
Step 2b:
- Code: Select all
.-------------------.---------------.--------------------.
| 4 7 3 | 26 16 25 | 8 9 156 |
| *18 *258 *158 | 346 9 4-5 | 7 *12 36-15 |
| 19 259 6 | 8 13 7 | 23 124 1345 |
:-------------------+---------------+--------------------:
| 5 468 18 | 2346 7 24 | 9 1248 134 |
| 368 468 2 | 9 5 1 | 36 48 7 |
| 1369 469 7 | 2346 36 8 | 236 5 134 |
:-------------------+---------------+--------------------:
| 68 568 58 | 1 2 3 | 4 7 9 |
| 7 3 4 | 5 8 9 | 1 6 2 |
| 2 1 9 | 7 4 6 | 5 3 8 |
'-------------------'---------------'--------------------'
Naked Quad: (1258)r2c1238 => -5 r2c6, -15 r2c9; stte
Either way, you don't really need the first step, but I listed it since I spotted it first.