Stuck on a Puzzle 2

Post puzzles for others to solve here.

Stuck on a Puzzle 2

Postby Fortesque92 » Thu Jul 16, 2020 11:34 pm

Can anyone be of assistance?
Attachments
Screenshot_20200716-215309.jpg
Screenshot_20200716-215309.jpg (53.67 KiB) Viewed 477 times
Fortesque92
 
Posts: 94
Joined: 30 June 2020

Re: Stuck on a Puzzle 2

Postby SpAce » Fri Jul 17, 2020 12:25 am

Hello again, Fortesque92,

Fortesque92 wrote:Can anyone be of assistance?

Yes, though I suggest you post questions like this in the Help with puzzles and solving techniques section (as you've done before).

Anyway, your puzzle is solved with basic techniques only. You only need one (a Hidden Pair), but I actually saw a Claiming opportunity first, so I'll show both moves:

Step 1 (unnecessary):

Code: Select all
4.3...8......9.7....68.7...5...7.9....29.1........8.5....12.479.34...1.22....6..8

.----------------.-------------------.-----------------.
| 4     7    3   | *26     16  *25   | 8    9     156  |
| 18    258  158 |  346-2  9    45-2 | 7    12    1356 |
| 19    259  6   |  8      13   7    | 23   124   1345 |
:----------------+-------------------+-----------------:
| 5     468  18  |  2346   7    24   | 9    1248  134  |
| 368   468  2   |  9      5    1    | 36   48    7    |
| 1369  469  7   |  2346   36   8    | 236  5     134  |
:----------------+-------------------+-----------------:
| 68    568  58  |  1      2    3    | 4    7     9    |
| 7     3    4   |  5      8    9    | 1    6     2    |
| 2     1    9   |  7      4    6    | 5    3     8    |
'----------------'-------------------'-----------------'

Locked Candidates Type 2 (Claiming): (2)r1\b2 => -2 r2c46

Step 2a:

Code: Select all
.-----------------.----------------.--------------------.
| 4     7    (3)  |  26     16  25 |  8    9      156   |
| 18    258   158 | *36-4  (9)  45 | (7)   12    *36-15 |
| 19    259  (6)  |  8      13  7  |  23   124    1345  |
:-----------------+----------------+--------------------:
| 5     468   18  |  2346   7   24 |  9    1248   134   |
| 368   468   2   |  9      5   1  |  36   48     7     |
| 1369  469   7   |  2346   36  8  |  236  5      134   |
:-----------------+----------------+--------------------:
| 68    568   58  |  1      2  (3) |  4    7      9     |
| 7     3     4   |  5      8   9  |  1   (6)     2     |
| 2     1     9   |  7      4  (6) |  5   (3)     8     |
'-----------------'----------------'--------------------'

Hidden Pair (36)r2c49 => -4 r2c4, -15 r2c9; stte (= singles to the end)

Hidden subsets are easiest to spot using the solved cells instead of pencil marks. The bracketed (3)s and (6)s, along with the solved (9) and (7) block all but two cells in row 2, leaving just two cells available for the two digits (3 and 6). Thus, other digits can't fit in those cells and may be eliminated.

Or, if it's easier to see (possible with pencil marks), you could use a Naked Quad on that same row.

Step 2b:

Code: Select all
.-------------------.---------------.--------------------.
|  4      7     3   | 26    16  25  | 8     9      156   |
| *18    *258  *158 | 346   9   4-5 | 7    *12     36-15 |
|  19     259   6   | 8     13  7   | 23    124    1345  |
:-------------------+---------------+--------------------:
|  5      468   18  | 2346  7   24  | 9     1248   134   |
|  368    468   2   | 9     5   1   | 36    48     7     |
|  1369   469   7   | 2346  36  8   | 236   5      134   |
:-------------------+---------------+--------------------:
|  68     568   58  | 1     2   3   | 4     7      9     |
|  7      3     4   | 5     8   9   | 1     6      2     |
|  2      1     9   | 7     4   6   | 5     3      8     |
'-------------------'---------------'--------------------'

Naked Quad: (1258)r2c1238 => -5 r2c6, -15 r2c9; stte

Either way, you don't really need the first step, but I listed it since I spotted it first.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Stuck on a Puzzle 2

Postby Fortesque92 » Fri Jul 17, 2020 8:34 am

Thank you, I can't believed I missed that hidden 36 pair!

Wasn't even aware of locked candidates type 2 (claiming) method either, I'm sure that will come in handy in the future.
Fortesque92
 
Posts: 94
Joined: 30 June 2020


Return to Puzzles