.
First solution, more or less like pjb, but with no x, y z.
Second solution, without using the tridagon rule at all:
Resolution state after Singles and whips[1]:
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 4589 24579 2456789 ! 36789 789 36789 ! 45789 789 1 !
! 4589 4579 456789 ! 6789 1 2 ! 45789 3 789 !
! 189 179 3 ! 4 5 789 ! 789 2 6 !
+-------------------------+-------------------------+-------------------------+
! 1589 1579 5789 ! 789 3 4 ! 2 6 789 !
! 3489 3479 4789 ! 2 6 789 ! 1 789 5 !
! 2 6 789 ! 5 789 1 ! 789 4 3 !
+-------------------------+-------------------------+-------------------------+
! 39 239 1 ! 36789 2789 36789 ! 36789 5 4 !
! 6 23459 2459 ! 1 24789 35789 ! 3789 789 789 !
! 7 8 459 ! 369 49 3569 ! 369 1 2 !
+-------------------------+-------------------------+-------------------------+
188 candidates.
hidden-pairs-in-a-column: c7{n4 n5}{r1 r2} ==> r2c7≠9, r2c7≠8, r2c7≠7, r1c7≠9, r1c7≠8, r1c7≠7 (not really necessary)
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 4589 24579 2456789 ! 36789 789 36789 ! 45 789 1 !
! 4589 4579 456789 ! 6789 1 2 ! 45 3 789 !
! 189 179 3 ! 4 5 789 ! 789 2 6 !
+-------------------------+-------------------------+-------------------------+
! 1589 1579 5789 ! 789 3 4 ! 2 6 789 !
! 3489 3479 4789 ! 2 6 789 ! 1 789 5 !
! 2 6 789 ! 5 789 1 ! 789 4 3 !
+-------------------------+-------------------------+-------------------------+
! 39 239 1 ! 36789 2789 36789 ! 36789 5 4 !
! 6 23459 2459 ! 1 24789 35789 ! 3789 789 789 !
! 7 8 459 ! 369 49 3569 ! 369 1 2 !
+-------------------------+-------------------------+-------------------------+
- Code: Select all
(solve-sukaku-grid-by-eleven-replacement
7 8 9
1 8
2 9
3 7
+-------------------------+-------------------------+-------------------------+
! 4589 24579 2456789 ! 36789 789 36789 ! 45 789 1 !
! 4589 4579 456789 ! 6789 1 2 ! 45 3 789 !
! 189 179 3 ! 4 5 789 ! 789 2 6 !
+-------------------------+-------------------------+-------------------------+
! 1589 1579 5789 ! 789 3 4 ! 2 6 789 !
! 3489 3479 4789 ! 2 6 789 ! 1 789 5 !
! 2 6 789 ! 5 789 1 ! 789 4 3 !
+-------------------------+-------------------------+-------------------------+
! 39 239 1 ! 36789 2789 36789 ! 36789 5 4 !
! 6 23459 2459 ! 1 24789 35789 ! 3789 789 789 !
! 7 8 459 ! 369 49 3569 ! 369 1 2 !
+---------------+-------------------------+-------------------------+
)
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 7, 8 and 9 in cells r1c8, r2c9 and r3c7,
the resolution state is:
- Code: Select all
+-------------------------+-------------------------+-------------------------+
! 45789 245789 2456789 ! 36789 789 36789 ! 45 7 1 !
! 45789 45789 456789 ! 6789 1 2 ! 45 3 8 !
! 1789 1789 3 ! 4 5 789 ! 9 2 6 !
+-------------------------+-------------------------+-------------------------+
! 15789 15789 5789 ! 789 3 4 ! 2 6 789 !
! 34789 34789 4789 ! 2 6 789 ! 1 789 5 !
! 2 6 789 ! 5 789 1 ! 789 4 3 !
+-------------------------+-------------------------+-------------------------+
! 3789 23789 1 ! 36789 2789 36789 ! 36789 5 4 !
! 6 2345789 245789 ! 1 24789 35789 ! 3789 789 789 !
! 789 789 45789 ! 36789 4789 356789 ! 36789 1 2 !
+-------------------------+-------------------------+-------------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
DON''T FORGET TO DO THE RELEVANT DIGIT REPLACEMENTS AT THE END, based on the original givens.
- Code: Select all
whip[1]: b9n9{r8c9 .} ==> r8c6≠9, r8c2≠9, r8c3≠9, r8c5≠9
z-chain[4]: r6n9{c3 c5} - r1c5{n9 n8} - r3c6{n8 n7} - r5n7{c6 .} ==> r6c3≠7
biv-chain[2]: c9n7{r8 r4} - r6n7{c7 c5} ==> r8c5≠7
biv-chain[3]: r6c3{n9 n8} - r6c7{n8 n7} - r4c9{n7 n9} ==> r4c1≠9, r4c2≠9, r4c3≠9
z-chain[3]: r4n8{c3 c4} - r4n9{c4 c9} - r5c8{n9 .} ==> r5c3≠8, r5c2≠8, r5c1≠8
biv-chain[4]: r8c9{n7 n9} - b6n9{r4c9 r5c8} - r5n8{c8 c6} - r3c6{n8 n7} ==> r8c6≠7
z-chain[4]: c5n7{r9 r6} - r6c7{n7 n8} - r5n8{c8 c6} - r3c6{n8 .} ==> r9c6≠7, r7c6≠7
z-chain[4]: c8n8{r8 r5} - r6n8{c7 c3} - r6n9{c3 c5} - r1c5{n9 .} ==> r8c5≠8
biv-chain[3]: c3n2{r1 r8} - r8c5{n2 n4} - r9n4{c5 c3} ==> r1c3≠4
biv-chain[4]: c3n6{r2 r1} - c3n2{r1 r8} - r8c5{n2 n4} - r9n4{c5 c3} ==> r2c3≠4
z-chain[5]: r6n7{c5 c7} - r4c9{n7 n9} - b5n9{r4c4 r6c5} - r1c5{n9 n8} - r3c6{n8 .} ==> r5c6≠7
hidden-single-in-a-column ==> r3c6=7
whip[1]: r3n8{c2 .} ==> r1c1≠8, r1c2≠8, r1c3≠8
whip[1]: r5n7{c3 .} ==> r4c1≠7, r4c2≠7, r4c3≠7
naked-pairs-in-a-row: r5{c6 c8}{n8 n9} ==> r5c3≠9, r5c2≠9, r5c1≠9
hidden-single-in-a-block ==> r6c3=9
whip[1]: b4n8{r4c3 .} ==> r4c4≠8
biv-chain[3]: r1c5{n9 n8} - b5n8{r6c5 r5c6} - b5n9{r5c6 r4c4} ==> r1c4≠9, r2c4≠9
stte
+-------+-------+-------+
! 4 2 6 ! 8 9 3 ! 5 7 1 !
! 9 7 5 ! 6 1 2 ! 4 3 8 !
! 1 8 3 ! 4 5 7 ! 9 2 6 !
+-------+-------+-------+
! 5 1 8 ! 7 3 4 ! 2 6 9 !
! 3 4 7 ! 2 6 9 ! 1 8 5 !
! 2 6 9 ! 5 8 1 ! 7 4 3 !
+-------+-------+-------+
! 7 3 1 ! 9 2 6 ! 8 5 4 !
! 6 5 2 ! 1 4 8 ! 3 9 7 !
! 8 9 4 ! 3 7 5 ! 6 1 2 !
+-------+-------+-------+
The last part could probably be shortened, but the point is: the solution is in Z5.
Apply 8 -> 7 9 -> 8 and 7 -> 9 in order to have the solution of the original puzzle.