- Code: Select all
*-----------*
|1.6|3.7|...|
|.4.|82.|65.|
|..2|...|...|
|---+---+---|
|...|.1.|..4|
|37.|...|..5|
|8..|...|...|
|---+---+---|
|...|...|4..|
|.68|.53|.1.|
|...|2.1|5.6|
*-----------*
*-----------*
|1.6|3.7|...|
|.4.|82.|65.|
|..2|...|...|
|---+---+---|
|...|.1.|..4|
|37.|...|..5|
|8..|...|...|
|---+---+---|
|...|...|4..|
|.68|.53|.1.|
|...|2.1|5.6|
*-----------*
+-------------------+--------------------+-----------------------+
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 | 37 4 37 |
+-------------------+--------------------+-----------------------+
| 6 29 59 | 57 1 28 | 2389 23789 4 |
| 3 7 a14 | 69 89 2468 | 128 268 5 |
| 8 129 5-4 | 57 3 d46 | 129 67 29 |
+-------------------+--------------------+-----------------------+
| 5 139 b179* | 69 c789* d68 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 79 |
| 4 39 79* | 2 c789* 1 | 5 38 6 |
+-------------------+--------------------+-----------------------+
+------------------+--------------------+----------------------+
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 | 37 4 37 |
+------------------+--------------------+----------------------+
| 6 f29 59 | 57 1 g28 | 2389 23789 4 |
| 3 7 14 | 69 9-8 2468 | 128 268 5 |
| 8 e129 45 | 57 3 46 | 129 67 29 |
+------------------+--------------------+----------------------+
| 5 d139 cb179 | 69 ab789 6-8 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 79 |
| 4 39 b79 | 2 ab789 1 | 5 38 6 |
+------------------+--------------------+----------------------+
.------------------------------------------------.
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 |e37 4 d37 |
|-------------+---------------+------------------|
| 6 b29 59 | 57 1 a28* |f2389 23789* 4 |
| 3 7 14 | 69 9-8 2468 | 128 268 5 |
| 8 c129 45 | 57 3 46 | 129 67 d29 |
|-------------+---------------+------------------|
| 5 139 179 | 69 789 6-8 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 d79 |
| 4 39 79 | 2 789* 1 | 5 38* 6 |
'------------------------------------------------'
+--------------+-------------------+-----------------+
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 | 37 4 37 |
+--------------+-------------------+-----------------+
| 6 29 59 | 57 1 ab28 | 2389 23789 4 |
| 3 7 14 | 69 a9-8 2468 | 128 268 5 |
| 8 129 45 | 57 3 b46 | 129 67 29 |
+--------------+-------------------+-----------------+
| 5 139 179 | 69 789 b68 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 79 |
| 4 39 79 | 2 789 1 | 5 38 6 |
+--------------+-------------------+-----------------+
1 5 6 | 3 4 7 | 289 289 289
7 4 3 | 8 2 9 | 6 5 1
9 8 2 | 1 6 5 | 37 4 37
------------------------+----------------------+---------------------
6 b29 59 | 57 1 a28 | 2389 23789 4
3 7 d14 | 69 9-8 2468 | 128 268 5
8 c129 45 | 57 3 46 | 129 67 29
------------------------+----------------------+---------------------
5 139 e179 | 69 f789 6-8 | 4 238 238
2 6 8 | 4 5 3 | 79 1 79
4 39 79 | 2 f789 1 | 5 38 6
Sudtyro2 wrote:
- Code: Select all
+--------------+-------------------+-----------------+
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 | 37 4 37 |
+--------------+-------------------+-----------------+
| 6 29 59 | 57 1 ab28 | 2389 23789 4 |
| 3 7 14 | 69 a9-8 2468 | 128 268 5 |
| 8 129 45 | 57 3 b46 | 129 67 29 |
+--------------+-------------------+-----------------+
| 5 139 179 | 69 789 b68 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 79 |
| 4 39 79 | 2 789 1 | 5 38 6 |
+--------------+-------------------+-----------------+
For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte
SteveC
yzfwsf wrote:Sudtyro2 wrote:
- Code: Select all
+--------------+-------------------+-----------------+
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 | 37 4 37 |
+--------------+-------------------+-----------------+
| 6 29 59 | 57 1 ab28 | 2389 23789 4 |
| 3 7 14 | 69 a9-8 2468 | 128 268 5 |
| 8 129 45 | 57 3 b46 | 129 67 29 |
+--------------+-------------------+-----------------+
| 5 139 179 | 69 789 b68 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 79 |
| 4 39 79 | 2 789 1 | 5 38 6 |
+--------------+-------------------+-----------------+
For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte
Is there something wrong with the logic?Or is it missing to mark some cells?
yzfwsf wrote:Is there something wrong with the logic?Or is it missing to mark some cells?
.-------------.---------------.-----------------.
| 1 5 6 | 3 4 7 | |
| 7 4 3 | 8 2 9 | |
| 9 8 2 | 1 6 5 | |
:-------------+---------------+-----------------:
| 6 | 57 1 2 | |
| 3 7 | 9 8 46 | |
| 8 | 57 3 46 | |
:-------------+---------------+-----------------:
| 5 | 6 79 8 | |
| 2 6 8 | 4 5 3 | |
| 4 | 2 79 1 | |
'-------------'---------------'-----------------'
Sudtyro2 wrote:There are only five digits and four cells involved in the logic, and all have been listed. So, I'm not sure what you are asking.
However, I do need to clarify my statement of Myth's CoALS rule. I should have stated that the digits in the overlap cell are strongly linked to the digits in the non-overlap cells(r5c5,r67c6) that are NOT contained in the overlap cell. In fact, Myth's simpler statement was that the digits in the overlap cell are strongly linked to the digits NOT found in the overlap cell. That accounts for the 8-digit that also appears twice in the non-overlap cells but is not included in the strong link on the right-hand side. Does this help any?
SteveC
Sudtyro2 wrote:
- Code: Select all
+--------------+-------------------+-----------------+
| 1 5 6 | 3 4 7 | 289 289 289 |
| 7 4 3 | 8 2 9 | 6 5 1 |
| 9 8 2 | 1 6 5 | 37 4 37 |
+--------------+-------------------+-----------------+
| 6 29 59 | 57 1 ab28 | 2389 23789 4 |
| 3 7 14 | 69 a9-8 2468 | 128 268 5 |
| 8 129 45 | 57 3 b46 | 129 67 29 |
+--------------+-------------------+-----------------+
| 5 139 179 | 69 789 b68 | 4 238 238 |
| 2 6 8 | 4 5 3 | 79 1 79 |
| 4 39 79 | 2 789 1 | 5 38 6 |
+--------------+-------------------+-----------------+
For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte
should read ... =>r5c2, as correctly shown with the '-' tag in his PMs((2&3&6&8) = (7&9))r46c5|r4579c6 - ((7or9) = 2)r8c5 - (2=6)r8c2 => r5c6 <> 6
Myth Jellies wrote:For the cells that make up the entire combined ALS structure, either all the digits found in the overlap region are found in the structure, or all the digits not found in the overlap region are found in the structure, or both.
Cenoman wrote: You have correcly written the coALS relationship (82=469)r4c6,(r5c5,r67c6), but the boolean +(82)r4c6,(r5c5,r67c6) does not imply +8r4c6, as it seems you have interpreted it. In the present puzzle it is equivalent to (2r4c6 AND 8r5c5) OR (2r4c6 AND 8r7c6), only way to "find in the structure all the digits in the overlap region". None of the bracketted expressions is in a weak link with 8r5c5.
One implication of +(82)r4c6,(r5c5,r67c6) is +2r4c6, but unfortunately no simple chain can be appended to this.