Steve Stumble 4/16/2021

Post puzzles for others to solve here.

Steve Stumble 4/16/2021

Postby SteveG48 » Fri Apr 16, 2021 1:56 pm

Code: Select all
 *-----------*
 |1.6|3.7|...|
 |.4.|82.|65.|
 |..2|...|...|
 |---+---+---|
 |...|.1.|..4|
 |37.|...|..5|
 |8..|...|...|
 |---+---+---|
 |...|...|4..|
 |.68|.53|.1.|
 |...|2.1|5.6|
 *-----------*
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4480
Joined: 08 November 2013
Location: Orlando, Florida

Re: Steve Stumble 4/16/2021

Postby Cenoman » Fri Apr 16, 2021 4:32 pm

Code: Select all
 +-------------------+--------------------+-----------------------+
 |  1    5     6     |  3    4     7      |  289    289     289   |
 |  7    4     3     |  8    2     9      |  6      5       1     |
 |  9    8     2     |  1    6     5      |  37     4       37    |
 +-------------------+--------------------+-----------------------+
 |  6    29    59    |  57   1     28     |  2389   23789   4     |
 |  3    7    a14    |  69   89    2468   |  128    268     5     |
 |  8    129   5-4   |  57   3    d46     |  129    67      29    |
 +-------------------+--------------------+-----------------------+
 |  5    139  b179*  |  69  c789* d68     |  4      238     238   |
 |  2    6     8     |  4    5     3      |  79     1       79    |
 |  4    39    79*   |  2   c789*  1      |  5      38      6     |
 +-------------------+--------------------+-----------------------+

UR(79)r79c35 using internals
(4=1)r5c3 - (1)r7c3 == (8)r79c5 - (8=64)r67c6 => -4 r6c3; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: Steve Stumble 4/16/2021

Postby Ngisa » Fri Apr 16, 2021 8:02 pm

Code: Select all
+------------------+--------------------+----------------------+
| 1     5      6   | 3     4       7    | 289     289      289 |
| 7     4      3   | 8     2       9    | 6       5        1   |
| 9     8      2   | 1     6       5    | 37      4        37  |
+------------------+--------------------+----------------------+
| 6    f29     59  | 57    1      g28   | 2389    23789    4   |
| 3     7      14  | 69    9-8     2468 | 128     268      5   |
| 8    e129    45  | 57    3       46   | 129     67       29  |
+------------------+--------------------+----------------------+
| 5    d139  cb179 | 69  ab789     6-8  | 4       238      238 |
| 2     6      8   | 4     5       3    | 79      1        79  |
| 4     39    b79  | 2   ab789     1    | 5       38       6   |
+------------------+--------------------+----------------------+

(8)r79c5 = Type 1 UR(79)r79c35 - (79=1)r7c3 - r7c2 = (1-2)r6c2 = r4c2 - (2=8)r4c6 => - 8r5c5,r7c6; stte

Clement
Ngisa
 
Posts: 1411
Joined: 18 November 2012

Re: Steve Stumble 4/16/2021

Postby jco » Sat Apr 17, 2021 1:26 am

After basics

Code: Select all
.------------------------------------------------.
| 1  5    6   | 3   4    7    | 289   289    289 |
| 7  4    3   | 8   2    9    | 6     5      1   |
| 9  8    2   | 1   6    5    |e37    4     d37  |
|-------------+---------------+------------------|
| 6 b29   59  | 57  1   a28*  |f2389  23789* 4   |
| 3  7    14  | 69  9-8  2468 | 128   268    5   |
| 8 c129  45  | 57  3    46   | 129   67    d29  |
|-------------+---------------+------------------|
| 5  139  179 | 69  789  6-8  | 4     238    238 |
| 2  6    8   | 4   5    3    | 79    1     d79  |
| 4  39   79  | 2   789* 1    | 5     38*    6   |
'------------------------------------------------'

(8=2)r4c6-r4c2=r6c2-(2=793)r368c9-r3c7=(3-8)r4c7=[SS(8):r4c6=r4c8-r9c8=r9c5]
=> -8 r5c5,r7c6; ste
Last edited by jco on Mon May 17, 2021 2:28 pm, edited 1 time in total.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: Steve Stumble 4/16/2021

Postby Sudtyro2 » Sat Apr 24, 2021 2:54 pm

Code: Select all
+--------------+-------------------+-----------------+
| 1   5   6    | 3    4      7     | 289  289   289  |
| 7   4   3    | 8    2      9     | 6    5     1    |
| 9   8   2    | 1    6      5     | 37   4     37   |
+--------------+-------------------+-----------------+
| 6   29  59   | 57   1    ab28    | 2389 23789 4    |
| 3   7   14   | 69  a9-8    2468  | 128  268   5    |
| 8   129 45   | 57   3     b46    | 129  67    29   |
+--------------+-------------------+-----------------+
| 5   139 179  | 69   789   b68    | 4    238   238  |
| 2   6   8    | 4    5      3     | 79   1     79   |
| 4   39  79   | 2    789    1     | 5    38    6    |
+--------------+-------------------+-----------------+

For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: Steve Stumble 4/16/2021

Postby jco » Sat Apr 24, 2021 5:51 pm

(...)
For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte
SteveC[/quote]

Very nice!

Regards,
JCO

Edit: I was happy to see CoALS back. It did not work this time, but I'm sure you will soon show us again its effectiveness in solving puzzles!
Last edited by jco on Tue Apr 27, 2021 1:09 am, edited 3 times in total.
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: Steve Stumble 4/16/2021

Postby pjb » Sun Apr 25, 2021 12:17 am

Code: Select all
 1       5       6      | 3      4      7      | 289    289    289   
 7       4       3      | 8      2      9      | 6      5      1     
 9       8       2      | 1      6      5      | 37     4      37     
------------------------+----------------------+---------------------
 6      b29      59     | 57     1     a28     | 2389   23789  4     
 3       7      d14     | 69     9-8    2468   | 128    268    5     
 8      c129     45     | 57     3      46     | 129    67     29     
------------------------+----------------------+---------------------
 5       139    e179    | 69    f789    6-8    | 4      238    238   
 2       6       8      | 4      5      3      | 79     1      79     
 4       39      79     | 2     f789    1      | 5      38     6     


Slightly different
(8=2)r4c6 - r4c2 = (2-1)r6c2 = r5c3 - (1=8)UR:r79c35 => -8 r5c5, r7c6; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Steve Stumble 4/16/2021

Postby yzfwsf » Sun Apr 25, 2021 12:52 pm

Sudtyro2 wrote:
Code: Select all
+--------------+-------------------+-----------------+
| 1   5   6    | 3    4      7     | 289  289   289  |
| 7   4   3    | 8    2      9     | 6    5     1    |
| 9   8   2    | 1    6      5     | 37   4     37   |
+--------------+-------------------+-----------------+
| 6   29  59   | 57   1    ab28    | 2389 23789 4    |
| 3   7   14   | 69  a9-8    2468  | 128  268   5    |
| 8   129 45   | 57   3     b46    | 129  67    29   |
+--------------+-------------------+-----------------+
| 5   139 179  | 69   789   b68    | 4    238   238  |
| 2   6   8    | 4    5      3     | 79   1     79   |
| 4   39  79   | 2    789    1     | 5    38    6    |
+--------------+-------------------+-----------------+

For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte

SteveC

Is there something wrong with the logic?Or is it missing to mark some cells?
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Steve Stumble 4/16/2021

Postby Sudtyro2 » Sun Apr 25, 2021 1:51 pm

yzfwsf wrote:
Sudtyro2 wrote:
Code: Select all
+--------------+-------------------+-----------------+
| 1   5   6    | 3    4      7     | 289  289   289  |
| 7   4   3    | 8    2      9     | 6    5     1    |
| 9   8   2    | 1    6      5     | 37   4     37   |
+--------------+-------------------+-----------------+
| 6   29  59   | 57   1    ab28    | 2389 23789 4    |
| 3   7   14   | 69  a9-8    2468  | 128  268   5    |
| 8   129 45   | 57   3     b46    | 129  67    29   |
+--------------+-------------------+-----------------+
| 5   139 179  | 69   789   b68    | 4    238   238  |
| 2   6   8    | 4    5      3     | 79   1     79   |
| 4   39  79   | 2    789    1     | 5    38    6    |
+--------------+-------------------+-----------------+

For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte

Is there something wrong with the logic?Or is it missing to mark some cells?

Hi yzfwsf,
There are only five digits and four cells involved in the logic, and all have been listed. So, I'm not sure what you are asking.
However, I do need to clarify my statement of Myth's CoALS rule. I should have stated that the digits in the overlap cell are strongly linked to the digits in the non-overlap cells(r5c5,r67c6) that are NOT contained in the overlap cell. In fact, Myth's simpler statement was that the digits in the overlap cell are strongly linked to the digits NOT found in the overlap cell. That accounts for the 8-digit that also appears twice in the non-overlap cells but is not included in the strong link on the right-hand side. Does this help any?

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: Steve Stumble 4/16/2021

Postby AnotherLife » Sun Apr 25, 2021 3:05 pm

yzfwsf wrote:Is there something wrong with the logic?Or is it missing to mark some cells?

Hello, yzfwsf,
I agree with you. If r5c5=8 then there is no contradiction in blocks 2, 5, and 8.
Code: Select all
.-------------.---------------.-----------------.
| 1  5    6   | 3   4    7    |                 |
| 7  4    3   | 8   2    9    |                 |
| 9  8    2   | 1   6    5    |                 |
:-------------+---------------+-----------------:
| 6           | 57  1    2    |                 |
| 3  7        | 9   8    46   |                 |
| 8           | 57  3    46   |                 |
:-------------+---------------+-----------------:
| 5           | 6   79   8    |                 |
| 2  6    8   | 4   5    3    |                 |
| 4           | 2   79   1    |                 |
'-------------'---------------'-----------------'

So we should use some other links to get a contradiction.
Bogdan
AnotherLife
 
Posts: 192
Joined: 07 January 2021
Location: Moscow, Russia

Re: Steve Stumble 4/16/2021

Postby yzfwsf » Sun Apr 25, 2021 3:25 pm

Sudtyro2 wrote:There are only five digits and four cells involved in the logic, and all have been listed. So, I'm not sure what you are asking.
However, I do need to clarify my statement of Myth's CoALS rule. I should have stated that the digits in the overlap cell are strongly linked to the digits in the non-overlap cells(r5c5,r67c6) that are NOT contained in the overlap cell. In fact, Myth's simpler statement was that the digits in the overlap cell are strongly linked to the digits NOT found in the overlap cell. That accounts for the 8-digit that also appears twice in the non-overlap cells but is not included in the strong link on the right-hand side. Does this help any?

SteveC

I think the biggest difference between your solution steps and Myth's example is that Myth's example contains external constraint (contradictory) cells. You put your logic into Xsudo and try, xsudo can't find the deleted numbers, but all the examples in Myth's can find the deleted numbers. The function of the external constraint cell is to ensure that one of the numbers from the overlapping cells and the number from the non-overlapping cells must be true, so as to find their common eliminations.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: Steve Stumble 4/16/2021

Postby Cenoman » Sun Apr 25, 2021 8:46 pm

Sudtyro2 wrote:
Code: Select all
+--------------+-------------------+-----------------+
| 1   5   6    | 3    4      7     | 289  289   289  |
| 7   4   3    | 8    2      9     | 6    5     1    |
| 9   8   2    | 1    6      5     | 37   4     37   |
+--------------+-------------------+-----------------+
| 6   29  59   | 57   1    ab28    | 2389 23789 4    |
| 3   7   14   | 69  a9-8    2468  | 128  268   5    |
| 8   129 45   | 57   3     b46    | 129  67    29   |
+--------------+-------------------+-----------------+
| 5   139 179  | 69   789   b68    | 4    238   238  |
| 2   6   8    | 4    5      3     | 79   1     79   |
| 4   39  79   | 2    789    1     | 5    38    6    |
+--------------+-------------------+-----------------+


For a one-link, one-stepper solution...
Myth's CoALS rule as applied to the two overlapping ALS marked (a&b). The rule states that the digits in the overlap cell(r4c6) are strongly linked to the digits in the non-overlap cells(r5c5,r67c6).
(82=469)r4c6,(r5c5,r67c6) => -8 r5c5, stte


Hi Steve,

Happy to read you again in this forum !

I'm also in a trouble with your move.
Were it correct, you would have found a cannibalistic elimination with 4 cells containing 5 digits (???)

I had left aside Myth's coALS rule up to now. In Myth's thread, there is no example of a cannibilistic elimination, even though it seems so, in his third example, but it is only due to a typo:
his chain
((2&3&6&8) = (7&9))r46c5|r4579c6 - ((7or9) = 2)r8c5 - (2=6)r8c2 => r5c6 <> 6
should read ... =>r5c2, as correctly shown with the '-' tag in his PMs

Myth Jellies wrote:For the cells that make up the entire combined ALS structure, either all the digits found in the overlap region are found in the structure, or all the digits not found in the overlap region are found in the structure, or both.


You have correcly written the coALS relationship (82=469)r4c6,(r5c5,r67c6), but the boolean +(82)r4c6,(r5c5,r67c6) does not imply +8r4c6, as it seems you have interpreted it. In the present puzzle it is equivalent to (2r4c6 AND 8r5c5) OR (2r4c6 AND 8r7c6), only way to "find in the structure all the digits in the overlap region". None of the bracketted expressions is in a weak link with 8r5c5.

One implication of +(82)r4c6,(r5c5,r67c6) is +2r4c6, but unfortunately no simple chain can be appended to this.

Best regards.
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: Steve Stumble 4/16/2021

Postby Sudtyro2 » Mon Apr 26, 2021 9:32 pm

Thanks to everyonel (and especially Cenoman) for the helpful replies!
It's obvious that my first post-vacation solution attempt took a wrong turn and ran directly off the tracks. :(
I hope to do much better in future posts.

Regards to all,
SteveC

PS. Standby for updates...we might be back on the tracks after all.
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: Steve Stumble 4/16/2021

Postby Sudtyro2 » Tue Apr 27, 2021 4:36 pm

Cenoman wrote: You have correcly written the coALS relationship (82=469)r4c6,(r5c5,r67c6), but the boolean +(82)r4c6,(r5c5,r67c6) does not imply +8r4c6, as it seems you have interpreted it. In the present puzzle it is equivalent to (2r4c6 AND 8r5c5) OR (2r4c6 AND 8r7c6), only way to "find in the structure all the digits in the overlap region". None of the bracketted expressions is in a weak link with 8r5c5.
One implication of +(82)r4c6,(r5c5,r67c6) is +2r4c6, but unfortunately no simple chain can be appended to this.


Thanks, Cenoman, for the feedback. Yes, I agree that the +(82)r4c6,(r5c5,r67c6) boolean does not imply +8r4c6. However, the multi-digit linking in the CoALS relationship (82=469)r4c6,(r5c5,r67c6) does immediately provide that (8=9)r4c6,r5c5 => -8 r5c5. This particular linking follows from (82=469) meaning (8&2)=(4&6&9) in which any one digit to the left of the strong-inference symbol is strongly linked to any digit to the right of the symbol. It's also worth noting that both 8r4c6 and 9r5c5 happen to be true in the fully resolved puzzle, even though only one need be true to effect the desired elimination.

Regards,
SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: Steve Stumble 4/16/2021

Postby yzfwsf » Tue Apr 27, 2021 11:12 pm

Myth's CoALS rule:The number group A comes from the overlapping area, and the number group B comes from the non-overlapping area, then the numbers in A have a strong relationship with the numbers in B.
And you turn it into a strong relationship between A from the overlapping area and B from the non-overlapping area.
In fact, the strong relationship is for A and B in all cells of CoALS, not partitions. That is to say, the final solution 8 may not come from r4c6, and the strong relationship you wrote does not hold. Myth's CoALS rule can only provide the following strong Relationship 8 (r47c6, r5c5) = 9r5c5.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Next

Return to Puzzles