i have the same eliminations as Cenoman and the same observations on antibackdoors
after basics the puzzle has no size 1-AntiBackdoors in singles or singles + intersections, but it has a lot of size 2-AntiBackdoors in singles, i counted 235, but impossible to have together one of these two eliminations with the techniques i use.
basics:
- Code: Select all
( n1r7c5 n7r4c7 n9r5c5 )
intersection:
((((5 0) (4 3 4) (4 5 6)) ((5 0) (6 3 4) (4 5 6))))
- Code: Select all
267 8 1269 5 4 2369 369 1367 79
2567 1569 3 267 678 2689 4689 1567 45789
4 569 69 367 3678 1 2 3567 5789
1 2 456 8 56 46 7 9 3
36 346 8 1 9 7 5 26 24
9 7 456 2346 356 2346 46 8 1
2358 345 7 9 1 348 38 235 6
23568 34569 2469 3467 3678 3468 1 2357 25789
368 1369 169 367 2 5 389 4 789
r4n4{c3 c6} - r7n4{c6 c2} => r5c2 r8c3 <> 4
basics:
- Code: Select all
( n4r5c9 n6r6c7 n2r5c8 n2r8c9 n2r7c1 n4r2c7 n2r1c3
n1r9c3 n1r2c2 n1r1c8 )
intersections:
((((9 0) (9 7 9) (3 8 9)) ((9 0) (9 9 9) (7 8 9)))
(((9 0) (3 2 1) (5 6 9)) ((9 0) (3 3 1) (6 9)))
(((8 0) (7 7 9) (3 8)) ((8 0) (9 7 9) (3 8 9)))
(((6 0) (4 5 5) (5 6)) ((6 0) (4 6 5) (4 6)))
(((5 0) (7 8 9) (3 5)) ((5 0) (8 8 9) (3 5 7))))
PAIR COL: ((5 2 4) (3 6)) ((9 2 7) (3 6))
(((3 2 1) (5 6 9)) ((7 2 7) (3 4 5)) ((8 2 7) (3 4 5 6 9)))
PAIR COL: ((1 9 3) (7 9)) ((9 9 9) (7 9))
(((2 9 3) (5 7 8 9)) ((3 9 3) (5 7 8)))
( n9r2c6 n2r6c6 n2r2c4 )
intersection:
((((8 0) (7 6 8) (3 4 8)) ((8 0) (8 6 8) (3 4 6 8))))
- Code: Select all
67 8 2 5 4 36 39 1 79
567 1 3 2 678 9 4 67 58
4 59 69 367 3678 1 2 367 58
1 2 45 8 56 46 7 9 3
36 36 8 1 9 7 5 2 4
9 7 45 34 35 2 6 8 1
2 45 7 9 1 348 38 35 6
3568 459 69 3467 367 3468 1 357 2
368 36 1 367 2 5 389 4 79
7r9c4 => r19c9 <> 7
r9c4=7 - r9n6{c4 c12} - c3n6{r8 r3} - r1c1{n6 n7}
=> r9c4 <> 7
ste.
otherwise the puzzle is in 2-template, and is solved with a single combination: (6 7)
- Code: Select all
Initialization:
#VT: (2 9 48 4 18 112 12 11 14)
Cells: nil nil nil (16 45) nil nil nil nil nil
SetVC: ( n4r2c7 n4r5c9 n6r6c7 n2r5c8 n2r8c9 n2r7c1
n2r1c3 n1r9c3 n1r2c2 n1r1c8 )
#VT: (1 2 23 4 6 9 7 5 6)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (66) (17 21 26 66) (13 22 30 68 69) nil (81) (27 74)
67 8 2 5 4 369 39 1 79
567 1 3 27 678 2689 4 67 5789
4 569 69 37 3678 1 2 367 578
1 2 45 8 56 46 7 9 3
36 36 8 1 9 7 5 2 4
9 7 45 234 35 234 6 8 1
2 345 7 9 1 348 38 35 6
3568 34569 69 3467 378 348 1 357 2
368 36 1 367 2 5 389 4 79
1: (6 7) 16 instances
.....6..77......6...6.7........6.7...6...7....7....6....7.....6...6...7.6..7.....
7....6..........67..6.7........6.7...6...7....7....6....7.....6...6...7.6..7.....
7....6.......7..6...6.....7....6.7...6...7....7....6....7.....6...6...7.6..7.....
7....6......7...6...6....7.....6.7...6...7....7....6....7.....6...67....6.......7
7....6.......7..6...6....7.....6.7...6...7....7....6....7.....66..7........6....7
7....6......7...6...6....7.....6.7...6...7....7....6....7.....66...7.......6....7
.....6..77......6...6.7........6.7..6....7....7....6....7.....6...6...7..6.7.....
7....6..........67..6.7........6.7..6....7....7....6....7.....6...6...7..6.7.....
7....6.......7..6...6.....7....6.7..6....7....7....6....7.....6...6...7..6.7.....
7....6......7...6...6....7.....6.7..6....7....7....6....7.....6...67.....6......7
7....6.......7..6...6....7.....6.7..6....7....7....6....7.....6.6.7........6....7
7....6......7...6...6....7.....6.7..6....7....7....6....7.....6.6..7.......6....7
7....6.......7..6..6.....7.....6.7..6....7....7....6....7.....6..67........6....7
7....6......7...6..6.....7.....6.7..6....7....7....6....7.....6..6.7.......6....7
7....6...6......7.....7..6.....6.7...6...7....7....6....7.....6..67........6....7
7....6...6......7....7...6.....6.7...6...7....7....6....7.....6..6.7.......6....7
.....6..........6...6..........6.....6.............6..........6...6.....6........
.....6..........6...6..........6.....6.............6..........66...........6.....
.....6..........6...6..........6....6..............6..........6...6......6.......
.....6..........6...6..........6....6..............6..........6.6..........6.....
.....6..........6..6...........6....6..............6..........6..6.........6.....
.....6...6...............6.....6.....6.............6..........6..6.........6.....
........77............7..........7.......7....7.........7.............7....7.....
7................7....7..........7.......7....7.........7.............7....7.....
7...............7.....7..........7.......7....7.........7.........7.............7
7...............7....7...........7.......7....7.........7..........7............7
7............7............7......7.......7....7.........7.............7....7.....
7............7...........7.......7.......7....7.........7.........7.............7
7...........7............7.......7.......7....7.........7..........7............7
#VT: (1 2 23 4 6 6 7 5 6)
Cells: nil nil nil nil nil (6 32) nil nil nil
SetVC: ( n6r1c6 n6r4c5 n4r4c6 n7r1c1 n9r1c9 n5r4c3
n4r6c3 n7r9c9 n3r1c7 n8r7c7 n9r9c7 n3r7c6
n5r7c8 n8r8c6 n3r8c8 n6r9c4 n2r6c6 n4r7c2
n7r8c5 n3r9c2 n8r2c5 n9r2c6 n5r2c9 n3r3c5
n8r3c9 n6r5c2 n3r6c4 n5r6c5 n4r8c4 n8r9c1
n6r2c1 n7r2c8 n9r3c3 n7r3c4 n6r3c8 n3r5c1
n5r8c1 n9r8c2 n6r8c3 n2r2c4 n5r3c2 )
7 8 2 5 4 6 3 1 9
6 1 3 2 8 9 4 7 5
4 5 9 7 3 1 2 6 8
1 2 5 8 6 4 7 9 3
3 6 8 1 9 7 5 2 4
9 7 4 3 5 2 6 8 1
2 4 7 9 1 3 8 5 6
5 9 6 4 7 8 1 3 2
8 3 1 6 2 5 9 4 7