Steve Stumble 1-23-2026

Post puzzles for others to solve here.

Steve Stumble 1-23-2026

Postby SteveG48 » Fri Jan 23, 2026 9:40 pm

Code: Select all
 *-----------*
 |...|...|3..|
 |.73|..9|.8.|
 |8..|3.2|4..|
 |---+---+---|
 |.5.|...|...|
 |.9.|135|.2.|
 |...|...|.7.|
 |---+---+---|
 |..7|6.4|..9|
 |.3.|8..|25.|
 |..9|.5.|...|
 *-----------*
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4613
Joined: 08 November 2013
Location: Orlando, Florida

Re: Steve Stumble 1-23-2026

Postby jco » Sat Jan 24, 2026 1:07 pm

I could not find anything simpler in one step.

After basics,
Code: Select all
,--------------------------------------------------------------------,
| 9      4     /25/    |/57/    8      1      | 3      6      257    |
| 126#   7      3      | 45     4\6\   9      |[15]    8      125    |
| 8     {1}6    156    | 3     \6\-7   2      | 4      9      157    |
|----------------------+----------------------+----------------------|
| 12346  5      12468  | 479   (247)   68     | 19     14     1348   |
| 7      9      48     | 1      3      5      | 6      2      48     |
| 12346 {1}6    12468  |(49)   (24)    68     | 159#   7      13458  |
|----------------------+----------------------+----------------------|
| 5      2      7      | 6      1      4      | 8      3      9      |
| 146    3      146    | 8      9      7      | 2      5      146    |
| 146    8      9      | 2      5      3      | 7      14     146    |
'--------------------------------------------------------------------'

Double Kraken (159)r6c7, (126)r2c1 => -7 r3c5; ste

Code: Select all
                            (2)r2c1 - (2=57)r1c34
                             ||
(1)r6c7 - r6c2  = (1)r3c2 - (1)r2c1
 ||                      /   ||
 ||                     /   (6)r2c1 - r2c5 = (6)r3c5
 ||                    /
(5)r6c7 - (5=1)r2c7---'
 ||
(9)r6c7 - (9=427)b5p278

Hidden Text: Show
First solution had 3 simple steps [no kraken] that was reorganized into 2 steps with one kraken.
This solution encompasses them in one step, but at the price of one more kraken.


EDIT: corrected typo (in notation of move, not in diagram).
Btw, Nice move found by eleven !
Last edited by jco on Sat Jan 24, 2026 4:05 pm, edited 1 time in total.
JCO
jco
 
Posts: 880
Joined: 09 June 2020

Re: Steve Stumble 1-23-2026

Postby rjamil » Sat Jan 24, 2026 1:51 pm

After 19 singleton moves, POM moves solution:

Code: Select all
 +------------------+---------------+----------------+
 | 9      4   25    | 57   8     1  | 3    6   257   |
 | 126    7   3     | 45   46    9  | 15   8   125   |
 | 8      16  156   | 3    67    2  | 4    9   157   |
 +------------------+---------------+----------------+
 | 12346  5   12468 | 479  2467  68 | 19   14  1348  |
 | 7      9   48    | 1    3     5  | 6    2   48    |
 | 12346  16  12468 | 49   246   68 | 159  7   13458 |
 +------------------+---------------+----------------+
 | 5      2   7     | 6    1     4  | 8    3   9     |
 | 146    3   146   | 8    9     7  | 2    5   146   |
 | 146    8   9     | 2    5     3  | 7    14  146   |
 +------------------+---------------+----------------+

Hidden Text: Show
Code: Select all
.....1...1................1......1.....1......1...........1......1.............1.# 1 - 1, 794, 5
.....1.........1...1.......1...........1.............1....1......1.............1.# 2 - 1, 2888, 5
.....1.........1...1.........1.........1.............1....1....1...............1.# 3 - 1, 2936, 5
.....1.........1...1..............1....1.....1............1......1..............1# 4 - 1, 3098, 5
.....1.........1...1..............1....1.......1..........1....1................1# 5 - 1, 3104, 5
.....1.........1...1..............1....1.......1..........1............11........# 6 - 1, 3105, 5
.....1.........1...1...............1...1.....1............1......1.............1.# 7 - 1, 3146, 5
.....1.........1...1...............1...1.......1..........1....1...............1.# 8 - 1, 3152, 5
.....1.........1....1.............1....1......1...........1....1................1# 9 - 1, 3392, 5
.....1.........1....1.............1....1......1...........1............11........# 10 - 1, 3393, 5
.....1.........1....1..............1...1......1...........1....1...............1.# 11 - 1, 3440, 5
.....1...........1.1.......1...........1...........1......1......1.............1.# 12 - 1, 4610, 5
.....1...........1.1.........1.........1...........1......1....1...............1.# 13 - 1, 4658, 5
.....1...........1.1.............1.....1.....1............1......1.............1.# 14 - 1, 4826, 5
.....1...........1.1.............1.....1.......1..........1....1...............1.# 15 - 1, 4832, 5
.....1...........1..1............1.....1......1...........1....1...............1.# 16 - 1, 5120, 5
..2..............2.....2...2...............2.....2.....2.............2.....2.....# 1 - 0, 4939, 2
..2..............2.....2.......2...........2.2.........2.............2.....2.....# 2 - 0, 5077, 2
........22.............2.....2.............2.....2.....2.............2.....2.....# 3 - 2, 667, 8
........22.............2.......2...........2...2.......2.............2.....2.....# 4 - 2, 763, 8
......3....3.........3.....3............3............3.......3..3............3...# 1 - 2, 1738, 6
......3....3.........3.............3....3....3...............3..3............3...# 2 - 2, 1996, 6
.4..........4...........4..4................4....4.........4.....4.............4.# 1 - 0, 38, 1
.4..........4...........4....4..............4....4.........4...4...............4.# 2 - 0, 86, 1
.4..........4...........4......4......4..............4.....4...4...............4.# 3 - 0, 116, 1
.4..........4...........4......4............44.............4.....4.............4.# 4 - 0, 134, 1
.4..........4...........4......4............4..4...........4...4...............4.# 5 - 0, 140, 1
.4..........4...........4.........4...4..........4.........4...4................4# 6 - 0, 206, 1
.4..........4...........4.........4...4..........4.........4...........44........# 7 - 0, 207, 1
.4..........4...........4..........4..4..........4.........4...4...............4.# 8 - 0, 254, 1
.4...........4..........4..4................4...4..........4.....4.............4.# 9 - 0, 902, 1
.4...........4..........4....4..............4...4..........4...4...............4.# 10 - 0, 950, 1
.4...........4..........4.....4.......4..............4.....4...4...............4.# 11 - 0, 980, 1
.4...........4..........4.....4.............44.............4.....4.............4.# 12 - 0, 998, 1
.4...........4..........4.....4.............4..4...........4...4...............4.# 13 - 0, 1004, 1
.4...........4..........4.........4...4.........4..........4...4................4# 14 - 0, 1070, 1
.4...........4..........4.........4...4.........4..........4...........44........# 15 - 0, 1071, 1
.4...........4..........4..........4..4.........4..........4...4...............4.# 16 - 0, 1118, 1
..5.........5.............5.5............5.........5..5...............5.....5....# 1 - 0, 637, 2
...5...........5....5.......5............5...........55...............5.....5....# 2 - 1, 3235, 3
...5.............5..5.......5............5.........5..5...............5.....5....# 3 - 1, 4957, 3
........5...5.......5.......5............5.........5..5...............5.....5....# 4 - 2, 3229, 8
.......6.6............6.........6.........6...6..........6.......6..............6# 1 - 2, 458, 7
.......6.....6.....6.......6..............6.......6......6.......6..............6# 2 - 2, 3776, 7
.......6.....6.....6.........6............6.......6......6.....6................6# 3 - 2, 3824, 7
.......6.....6.....6.........6............6.......6......6.............66........# 4 - 2, 3825, 7
.......6.....6.....6............6.........6..6...........6.......6..............6# 5 - 2, 3914, 7
.......6.....6.....6............6.........6....6.........6.....6................6# 6 - 2, 3920, 7
.......6.....6.....6............6.........6....6.........6.............66........# 7 - 2, 3921, 7
.......6.....6......6...........6.........6...6..........6.....6................6# 8 - 2, 4208, 7
.......6.....6......6...........6.........6...6..........6.............66........# 9 - 2, 4209, 7
...7......7...............7....7....7...............7...7...........7.........7..# 1 - 1, 1542, 3
........7.7...........7.......7.....7...............7...7...........7.........7..# 2 - 2, 1254, 8
....8...........8.8..........8..............8.....8.........8.....8......8.......# 1 - 1, 3551, 4
....8...........8.8.............8.....8..............8......8.....8......8.......# 2 - 1, 3623, 4
....8...........8.8.............8...........8..8............8.....8......8.......# 3 - 1, 3647, 4
....8...........8.8................8..8...........8.........8.....8......8.......# 4 - 1, 3719, 4
9.............9..........9....9......9.............9..........9....9......9......# 1 - 0, 2117, 0
9.............9..........9.......9...9..........9.............9....9......9......# 2 - 0, 2213, 0

#MNVT: (16 4 2 16 4 9 2 4 2)
1) Single-digit POM: .......6.6...6.....66.6....6.6.66.........6..666.66......6.....6.6.....66.......6
Digit 6 not in 9 Templates => -6 @ r4c5 r6c5
Code: Select all
 +------------------+--------------+----------------+
 | 9      4   25    | 57   8    1  | 3    6   257   |
 | 126    7   3     | 45   46   9  | 15   8   125   |
 | 8      16  156   | 3    67   2  | 4    9   157   |
 +------------------+--------------+----------------+
 | 12346  5   12468 | 479  247  68 | 19   14  1348  |
 | 7      9   48    | 1    3    5  | 6    2   48    |
 | 12346  16  12468 | 49   24   68 | 159  7   13458 |
 +------------------+--------------+----------------+
 | 5      2   7     | 6    1    4  | 8    3   9     |
 | 146    3   146   | 8    9    7  | 2    5   146   |
 | 146    8   9     | 2    5    3  | 7    14  146   |
 +------------------+--------------+----------------+

2) Double-digit POM: 2 @ r1c39 r2c19 r3c6 r4c135 r5c8 r6c135 r7c2 r8c7 r9c4
and POM: 7 @ r1c49 r2c2 r3c59 r4c45 r5c1 r6c8 r7c3 r8c6 r9c7
Digit 2 not in 3 Templates => -2 @ r6c3
Code: Select all
 +------------------+--------------+----------------+
 | 9      4   25    | 57   8    1  | 3    6   257   |
 | 126    7   3     | 45   46   9  | 15   8   125   |
 | 8      16  156   | 3    67   2  | 4    9   157   |
 +------------------+--------------+----------------+
 | 12346  5   12468 | 479  247  68 | 19   14  1348  |
 | 7      9   48    | 1    3    5  | 6    2   48    |
 | 12346  16  1468  | 49   24   68 | 159  7   13458 |
 +------------------+--------------+----------------+
 | 5      2   7     | 6    1    4  | 8    3   9     |
 | 146    3   146   | 8    9    7  | 2    5   146   |
 | 146    8   9     | 2    5    3  | 7    14  146   |
 +------------------+--------------+----------------+

3) Triple-digit POM: 1 @ r1c6 r2c179 r3c239 r4c13789 r5c4 r6c12379 r7c5 r8c139 r9c189
and POM: 7 @ r1c49 r2c2 r3c59 r4c45 r5c1 r6c8 r7c3 r8c6 r9c7
and POM: 9 @ r1c1 r2c6 r3c8 r4c47 r5c2 r6c47 r7c9 r8c5 r9c3
Digit 1 not in 15 Templates => -1 @ r2c1 r3c9

Triple-digit POM: 2 @ r1c39 r2c19 r3c6 r4c135 r5c8 r6c15 r7c2 r8c7 r9c4
and POM: 5 @ r1c349 r2c479 r3c39 r4c2 r5c6 r6c79 r7c1 r8c8 r9c5
and POM: 7 @ r1c49 r2c2 r3c59 r4c45 r5c1 r6c8 r7c3 r8c6 r9c7
Digit 2 not in 2 Templates => -2 @ r1c9 r2c1 r4c3
Digit 2 in all 2 Templates => 2 @ r1c3 r2c9

Triple-digit POM: 4 @ r1c2 r2c45 r3c7 r4c134589 r5c39 r6c13459 r7c6 r8c139 r9c189
and POM: 1 @ r1c6 r2c7 r3c23 r4c13789 r5c4 r6c12379 r7c5 r8c139 r9c189
and POM: 5 @ r1c49 r2c47 r3c39 r4c2 r5c6 r6c79 r7c1 r8c8 r9c5
Digit 4 not in 8 Templates => -4 @ r2c4 r4c5 r6c5
Digit 4 in all 8 Templates => 4 @ r2c5

Triple-digit POM: 4 @ r1c2 r2c5 r3c7 r4c13489 r5c39 r6c1349 r7c6 r8c139 r9c189
and POM: 1 @ r1c6 r2c7 r3c23 r4c13789 r5c4 r6c12379 r7c5 r8c139 r9c189
and POM: 6 @ r1c8 r2c1 r3c235 r4c136 r5c7 r6c1236 r7c4 r8c139 r9c19
Digit 4 not in 4 Templates => -4 @ r4c1 r6c1 r6c3 r8c3 r9c9

Triple-digit POM: 5 @ r1c49 r2c47 r3c39 r4c2 r5c6 r6c79 r7c1 r8c8 r9c5
and POM: 1 @ r1c6 r2c7 r3c23 r4c13789 r5c4 r6c12379 r7c5 r8c139 r9c189
and POM: 2 @ r1c3 r2c9 r3c6 r4c15 r5c8 r6c15 r7c2 r8c7 r9c4
Digit 5 not in 1 Template => -5 @ r1c4 r2c7 r3c9 r6c9
Digit 5 in all 1 Template => 5 @ r1c9 r3c3 r6c7

Triple-digit POM: 6 @ r1c8 r2c1 r3c25 r4c136 r5c7 r6c1236 r7c4 r8c139 r9c19
and POM: 1 @ r1c6 r2c7 r3c2 r4c13789 r5c4 r6c1239 r7c5 r8c139 r9c189
and POM: 2 @ r1c3 r2c9 r3c6 r4c15 r5c8 r6c15 r7c2 r8c7 r9c4
Digit 6 not in 1 Template => -6 @ r3c2 r4c1 r4c3 r6c1 r6c3 r6c6 r8c1 r8c9 r9c1
Digit 6 in all 1 Template => 6 @ r3c5 r4c6 r6c2 r8c3 r9c9

Triple-digit POM: 7 @ r1c4 r2c2 r3c9 r4c45 r5c1 r6c8 r7c3 r8c6 r9c7
and POM: 1 @ r1c6 r2c7 r3c2 r4c13789 r5c4 r6c139 r7c5 r8c19 r9c18
and POM: 2 @ r1c3 r2c9 r3c6 r4c15 r5c8 r6c15 r7c2 r8c7 r9c4
Digit 7 not in 1 Template => -7 @ r4c4
Digit 7 in all 1 Template => 7 @ r4c5

Triple-digit POM: 8 @ r1c5 r2c8 r3c1 r4c39 r5c39 r6c369 r7c7 r8c4 r9c2
and POM: 1 @ r1c6 r2c7 r3c2 r4c13789 r5c4 r6c139 r7c5 r8c19 r9c18
and POM: 2 @ r1c3 r2c9 r3c6 r4c1 r5c8 r6c15 r7c2 r8c7 r9c4
Digit 8 not in 2 Templates => -8 @ r6c3 r6c9

Triple-digit POM: 8 @ r1c5 r2c8 r3c1 r4c39 r5c39 r6c6 r7c7 r8c4 r9c2
and POM: 2 @ r1c3 r2c9 r3c6 r4c1 r5c8 r6c15 r7c2 r8c7 r9c4
and POM: 3 @ r1c7 r2c3 r3c4 r4c19 r5c5 r6c19 r7c8 r8c2 r9c6
Digit 8 not in 1 Template => -8 @ r4c9 r5c3
Digit 8 in all 1 Template => 8 @ r4c3 r5c9

Triple-digit POM: 9 @ r1c1 r2c6 r3c8 r4c47 r5c2 r6c4 r7c9 r8c5 r9c3
and POM: 1 @ r1c6 r2c7 r3c2 r4c1789 r5c4 r6c139 r7c5 r8c19 r9c18
and POM: 2 @ r1c3 r2c9 r3c6 r4c1 r5c8 r6c15 r7c2 r8c7 r9c4
Digit 9 not in 1 Template => -9 @ r4c4
Digit 9 in all 1 Template => 9 @ r4c7 r6c4; stte

R. Jamil
rjamil
 
Posts: 915
Joined: 15 October 2014
Location: Karachi, Pakistan

Re: Steve Stumble 1-23-2026

Postby eleven » Sat Jan 24, 2026 3:16 pm

Code: Select all
 *-----------------------------------------------------------------*
 |    9       4   B25    |   7-5   8     1    |  3     6    257    |
 | xAa126     7    3     | yd45   y46    9    | b15    8    125    |
 |    8      b16   156   |   3     67    2    |  4     9   c157    |
 |-----------------------+--------------------+--------------------|
 |    12346   5    12468 |   479   247   68   |  19    14   1348   |
 |    7       9    48    |   1     3     5    |  6     2    48     |
 |    12346  c16   12468 |  d49    24    68   | c159   7    13458  |
 |-----------------------+--------------------+--------------------|
 |    5       2    7     |   6     1     4    |  8     3    9      |
 |    146     3    146   |   8     9     7    |  2     5    146    |
 |    146     8    9     |   2     5     3    |  7     14   146    |
 *-----------------------------------------------------------------*

Kraken 126r2c1:
1r2c1 - (1=65)r3c2,r2c7 - (6|5=19)r6c27 - (9=45)r62c4
2r2c1 - (2=5)r1c3
6r2c1 - (6=45)r2c54
=> -5r1c4, stte
eleven
 
Posts: 3274
Joined: 10 February 2008

Re: Steve Stumble 1-23-2026

Postby pjb » Sun Jan 25, 2026 2:25 am

Code: Select all
 9       4      d25     |c57     8      1      | 3      6      257   
e126     7       3      | 5-4   a46     9      |f15     8      125   
 8      h16      156    | 3     b67     2      | 4      9     g157   
------------------------+----------------------+---------------------
 12346   5       12468  | 479    27-4   68     | 19     14     1348   
 7       9       48     | 1      3      5      | 6      2      48     
 12346  i16      12468  |k49     2-4    68     |j159    7      13458 
------------------------+----------------------+---------------------
 5       2       7      | 6      1      4      | 8      3      9     
 146     3       146    | 8      9      7      | 2      5      146   
 146     8       9      | 2      5      3      | 7      14     146   

(4=6*)r2c5 - (6=7^)r3c5 - (7=5)r1c4 - (5=2)r1c3 - (2|6*=1)r2c1 - (1=5#)r2c7 - (5|7^=1)r3c9 - (1=6)r3c2 - (6=1)r6c2 - (1|5#=9)r6c7 - (9=4)r6c4 => -4 r2c4, r46c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2747
Joined: 11 September 2011
Location: Sydney, Australia

Re: Steve Stumble 1-23-2026

Postby Cenoman » Sun Jan 25, 2026 8:41 am

Code: Select all
 +-----------------------+-------------------+----------------------+
 |  9       4  Ce25^     |  7-5   8     1    |   3     6   C257^    |
 |db126*    7    3       |zC45^   46    9    | Bb15*   8  Cc125^    |
 |  8      b16*  156     |  3     67    2    |   4     9    157     |
 +-----------------------+-------------------+----------------------+
 |  12346   5    12468   |  479   247   68   |   19    14   1348    |
 |  7       9    48      |  1     3     5    |   6     2    48      |
 |  12346  b16*  12468   | z49    24    68   |yAa159   7    13458   |
 +-----------------------+-------------------+----------------------+
 |  5       2    7       |  6     1     4    |   8     3    9       |
 |  146     3    146     |  8     9     7    |   2     5    146     |
 |  146     8    9       |  2     5     3    |   7     14   146     |
 +-----------------------+-------------------+----------------------+

Kraken cell (159)r6c7 [with embedded almost kite (*) & almost M-wing (^)]
(1)r6c7 - [r6c2 = r3c2 - r2c1 = r2c7] = (1-2)r2c9 = r2c1 - (2=5)r1c3
(5)r6c7 - r2c7 = [(5)r2c4 = (5-2)r2c9 = r1c9 - (2=5)r1c3]
(9)r6c7 - (9=45)r24c7
=> -5 r1c4; ste
Cenoman
Cenoman
 
Posts: 3195
Joined: 21 November 2016
Location: France


Return to Puzzles