Steve Hodoku 11-24-2022

Post puzzles for others to solve here.

Steve Hodoku 11-24-2022

Postby SteveG48 » Thu Nov 24, 2022 4:29 pm

Happy Thanksgiving everyone. Hopefully, this one isn't a turkey.

Code: Select all
 *-----------*
 |8.4|5..|...|
 |.69|134|...|
 |.1.|.2.|...|
 |---+---+---|
 |.7.|.5.|..9|
 |..8|261|7..|
 |3..|.4.|.1.|
 |---+---+---|
 |...|.7.|.8.|
 |...|413|96.|
 |...|..2|3.4|
 *-----------*
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Steve Hodoku 11-24-2022

Postby RSW » Thu Nov 24, 2022 11:14 pm

Code: Select all
 +---------------+---------+-----------------+
 | 8  b23   4    | 5  9 67 | 126 c237 c12367 |
 | 257 6    9    | 1  3 4  | 58   257  2578  |
 | 57  1    357  | 8  2 67 | 4    9   d3567  |
 +---------------+---------+-----------------+
 | 146 7    126  | 3  5 8  | 26   24   9     |
 | 49  49-5 8    | 2  6 1  | 7    345 e35    |
 | 3  a25   256  | 7  4 9  | 8-5  1    268-5 |
 +---------------+---------+-----------------+
 | 469 349  36   | 69 7 5  | 12   8    12    |
 | 257 8    257  | 4  1 3  | 9    6   f57    |
 | 169 9-5  1567 | 69 8 2  | 3   g57   4     |
 +---------------+---------+-----------------+

(5=2)r6c2 - (2=3)r1c2 - (3)r1c89 = (3)r3c9 - (3=5)r5c9 - (5)r8c9 = (5)r9c8 => -5r59c2 -5r6c79; stte
RSW
 
Posts: 670
Joined: 01 December 2018
Location: Western Canada

Re: Steve Hodoku 11-24-2022

Postby denis_berthier » Fri Nov 25, 2022 7:03 am

.
Happy Thanksgiving

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 8     23    4     ! 5     9     67    ! 126   237   12367 !
   ! 257   6     9     ! 1     3     4     ! 258   257   2578  !
   ! 57    1     357   ! 8     2     67    ! 4     9     3567  !
   +-------------------+-------------------+-------------------+
   ! 1246  7     126   ! 3     5     8     ! 26    24    9     !
   ! 459   459   8     ! 2     6     1     ! 7     345   35    !
   ! 3     25    256   ! 7     4     9     ! 2568  1     2568  !
   +-------------------+-------------------+-------------------+
   ! 2469  2349  236   ! 69    7     5     ! 12    8     12    !
   ! 257   8     257   ! 4     1     3     ! 9     6     257   !
   ! 15679 59    1567  ! 69    8     2     ! 3     57    4     !
   +-------------------+-------------------+-------------------+
115 candidates


1) There's a solution in BC3:
Code: Select all
naked-pairs-in-a-row: r7{c7 c9}{n1 n2} ==> r7c3≠2, r7c2≠2, r7c1≠2
whip[1]: r7n2{c9 .} ==> r8c9≠2
hidden-pairs-in-a-column: c7{n5 n8}{r2 r6} ==> r6c7≠6, r6c7≠2, r2c7≠2
naked-triplets-in-a-column: c1{r2 r3 r8}{n2 n7 n5} ==> r9c1≠7, r9c1≠5, r5c1≠5, r4c1≠2
biv-chain[3]: r3n3{c9 c3} - r7c3{n3 n6} - r6n6{c3 c9} ==> r3c9≠6
singles ==> r3c6=6, r1c6=7
naked-pairs-in-a-row: r1{c2 c8}{n2 n3} ==> r1c9≠3, r1c9≠2, r1c7≠2
naked-triplets-in-a-column: c9{r3 r5 r8}{n7 n3 n5} ==> r6c9≠5, r2c9≠7, r2c9≠5
finned-x-wing-in-columns: n7{c9 c1}{r8 r3} ==> r3c3≠7
whip[1]: c3n7{r9 .} ==> r8c1≠7
biv-chain[3]: r8c1{n5 n2} - b1n2{r2c1 r1c2} - r6c2{n2 n5} ==> r9c2≠5
singles ==> r9c2=9, r9c4=6, r7c4=9, r9c1=1, r4c3=1, r5c1=9
whip[1]: r4n2{c8 .} ==> r6c9≠2
whip[1]: c2n5{r6 .} ==> r6c3≠5
biv-chain[3]: r5n4{c2 c8} - c8n3{r5 r1} - c2n3{r1 r7} ==> r7c2≠4
stte


2) The simplest 1-step solution requires a whip[5]:
whip[5]: r1c2{n2 n3} - r3n3{c3 c9} - r5c9{n3 n5} - b9n5{r8c9 r9c8} - c2n5{r9 .} ==> r6c2≠2
stte

3) There's a 2-step solution in BC4:
Code: Select all
biv-chain[4]: r5c9{n5 n3} - r3n3{c9 c3} - r1c2{n3 n2} - r6c2{n2 n5} ==> r6c7≠5, r6c9≠5, r5c1≠5, r5c2≠5
singles ==> r2c7=5, r2c9=8, r6c7=8
biv-chain[4]: r1c2{n2 n3} - c8n3{r1 r5} - c8n5{r5 r9} - c2n5{r9 r6} ==> r6c2≠2
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Steve Hodoku 11-24-2022

Postby jco » Fri Nov 25, 2022 8:18 pm

Happy Thanksgiving!
Two steps for me. After basics
Code: Select all
.--------------------------------------------------------------------.
| 8     c23     4      | 5      9      67     | 126    237    12367  |
| 257    6      9      | 1      3      4      | 58     257    2578   |
| 57     1     d357    | 8      2      67     | 4      9     e3567   |
|----------------------+----------------------+----------------------|
| 16-4   7      126    | 3      5      8      | 26    h24     9      |
| 49    a459    8      | 2      6      1      | 7     g35-4  f35     |
| 3      25     256    | 7      4      9      | 58     1      2568   |
|----------------------+----------------------+----------------------|
| 469   b349    36     | 69     7      5      | 12     8      12     |
| 257    8      257    | 4      1      3      | 9      6      57     |
| 169    59     1567   | 69     8      2      | 3      57     4      |
'--------------------------------------------------------------------'

1. (4)r5c2 = (4-3)r7c2 = (3)r1c2 - (3)r3c3 = (3)r3c9 - (3)r5c9 = (3-4)r5c8 = (4)r4c8 => -4 r4c1, -4 r5c8 [4 placements and basics]
---
Code: Select all
.-----------------------------------------------------------.
| 8    e2-3   4     | 5     9     67    | 16    237   1367  |
|d27    6     9     | 1     3     4     | 5    c27    8     |
| 57    1     357   | 8     2     67    | 4     9     367   |
|-------------------+-------------------+-------------------|
| 16    7     126   | 3     5     8     | 26    4     9     |
| 49   a49    8     | 2     6     1     | 7     35    35    |
| 3     25    256   | 7     4     9     | 8     1     26    |
|-------------------+-------------------+-------------------|
| 469  a349   36    | 69    7     5     | 12    8     12    |
| 257   8     257   | 4     1     3     | 9     6     57    |
| 169  a59    1567  | 69    8     2     | 3    b57    4     |
'-----------------------------------------------------------'
2. (3=495)r579c2 - (5=7)r9c8 - (7)r2c8 = (7-2)r2c1 = (2)r1c2 => -3 r1c2; ste
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Steve Hodoku 11-24-2022

Postby SteveG48 » Fri Nov 25, 2022 10:15 pm

Nice, RSW. I like the fact that both eliminations in c2 are necessary for the singles solution.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Steve Hodoku 11-24-2022

Postby RSW » Fri Nov 25, 2022 10:23 pm

Thanks. I definitely had to hunt for that one.
RSW
 
Posts: 670
Joined: 01 December 2018
Location: Western Canada

Re: Steve Hodoku 11-24-2022

Postby SteveG48 » Sat Nov 26, 2022 12:03 am

Code: Select all
 *--------------------------------------------------------------------*
 | 8     b23     4      | 5      9      67     | 126    237    12367  |
 | 257    6      9      | 1      3      4      | 58     257    2578   |
 | 57     1     a357    | 8      2      67     | 4      9      567-3  |
 *----------------------+----------------------+----------------------|
 | 146    7      126    | 3      5      8      | 26     24     9      |
 | 49    c459    8      | 2      6      1      | 7      345 abe35     |
 | 3      25     256    | 7      4      9      | 58     1      2568   |
 *----------------------+----------------------+----------------------|
 | 469   c349    36     | 69     7      5      | 12     8      12     |
 | 257    8      257    | 4      1      3      | 9      6     e57     |
 | 169   d59     1567   | 69     8      2      | 3     d57     4      |
 *--------------------------------------------------------------------*


3r3c3,r5c9 = (35)r1c2,r5c9 - (3|5=49)r57c2 - (9=57)r9c28 - (7=53)r58c9 => -3 r3c9 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida


Return to Puzzles