Hello.
Yes we can resolve this puzzle without pencilmarks.
- Code: Select all
*-----------*
|..1|..2|35.|
|...|...|2..|
|.8.|4..|.91|
|---+---+---|
|5.9|31.|4..|
|...|7.4|...|
|..7|.25|8.3|
|---+---+---|
|86.|..9|.3.|
|..3|...|...|
|.74|1..|5..|
*-----------*
Listed below are the resolution and the method given by the solver online:
http://en.top-sudoku.comMake:
Click:Enter a grid
Enter the statement.
Click: Solution of the grid
Click : move list
 1)  lin:4  col:2  val:2  by inclusion
 2)  lin:6  col:4  val:9  by exclusion
 3)  lin:2  col:6  val:1  by exclusion
 4)  lin:5  col:3  val:8  by exclusion
 5)  lin:5  col:5  val:6  by inclusion
 6)  lin:4  col:6  val:8  by inclusion
 7)  lin:7  col:7  val:1  by exclusion
 8)  lin:5  col:7  val:9  by inclusion
 9)  lin:6  col:1  val:6  by exclusion
10)Â Â lin:6Â Â col:8Â Â val:1Â Â by inclusion
11)Â Â lin:6Â Â col:2Â Â val:4Â Â by inclusion
12)Â Â lin:1Â Â col:2Â Â val:9Â Â by inclusion
13)Â Â lin:5Â Â col:8Â Â val:2Â Â by inclusion
14)Â Â lin:5Â Â col:9Â Â val:5Â Â by inclusion
15)Â Â lin:2Â Â col:5Â Â val:9Â Â by exclusion
16)Â Â lin:8Â Â col:7Â Â val:6Â Â multiple choice
17)Â Â lin:9Â Â col:8Â Â val:8Â Â by inclusion
18)Â Â lin:9Â Â col:5Â Â val:3Â Â by inclusion
19)Â Â lin:9Â Â col:6Â Â val:6Â Â by inclusion
20)Â Â lin:8Â Â col:6Â Â val:7Â Â by inclusion
21)Â Â lin:3Â Â col:6Â Â val:3Â Â by inclusion
22)Â Â lin:8Â Â col:8Â Â val:4Â Â by inclusion
23)Â Â lin:3Â Â col:7Â Â val:7Â Â by inclusion
24)Â Â lin:3Â Â col:1Â Â val:2Â Â by inclusion
25)Â Â lin:9Â Â col:1Â Â val:9Â Â by inclusion
26)Â Â lin:8Â Â col:1Â Â val:1Â Â by inclusion
27)Â Â lin:2Â Â col:8Â Â val:6Â Â by inclusion
28)Â Â lin:3Â Â col:5Â Â val:5Â Â by inclusion
29)Â Â lin:7Â Â col:5Â Â val:4Â Â by inclusion
30)Â Â lin:8Â Â col:5Â Â val:8Â Â by inclusion
31)Â Â lin:1Â Â col:5Â Â val:7Â Â by inclusion
32)Â Â lin:2Â Â col:4Â Â val:8Â Â by inclusion
33)Â Â lin:1Â Â col:4Â Â val:6Â Â by inclusion
34)Â Â lin:4Â Â col:8Â Â val:7Â Â by inclusion
35)Â Â lin:4Â Â col:9Â Â val:6Â Â by inclusion
36)Â Â lin:1Â Â col:1Â Â val:4Â Â by inclusion
37)Â Â lin:8Â Â col:2Â Â val:5Â Â by inclusion
38)Â Â lin:8Â Â col:4Â Â val:2Â Â by inclusion
39)Â Â lin:7Â Â col:3Â Â val:2Â Â by inclusion
40)Â Â lin:7Â Â col:4Â Â val:5Â Â by inclusion
41)Â Â lin:8Â Â col:9Â Â val:9Â Â by inclusion
42)Â Â lin:7Â Â col:9Â Â val:7Â Â by inclusion
43)Â Â lin:2Â Â col:2Â Â val:3Â Â by inclusion
44)Â Â lin:2Â Â col:1Â Â val:7Â Â by inclusion
45)Â Â lin:5Â Â col:1Â Â val:3Â Â by inclusion
46)Â Â lin:9Â Â col:9Â Â val:2Â Â by inclusion
47)Â Â lin:1Â Â col:9Â Â val:8Â Â by inclusion
48)Â Â lin:2Â Â col:9Â Â val:4Â Â by inclusion
49)Â Â lin:5Â Â col:2Â Â val:1Â Â by inclusion
50)Â Â lin:3Â Â col:3Â Â val:6Â Â by inclusion
51)Â Â lin:2Â Â col:3Â Â val:5Â Â by inclusion
Cordially
Alex