Good programs. You also did it with the 35. This is my solution:
- Code: Select all
*------------------------------------------------------------*
| 3 5 8 | 7 1 2 | 469 469 69 |
| 9 1 7 | 3456 345 3456 | 35 8 2 |
| 2 6 4 | 35 9 8 | 7 #35 1 |
|--------------+-----------------------+---------------------|
| 4 8 29 | 2359 6 1 | 359 23579 3579 |
| 5 7 269 | 8 234 349 | 3469 1 369 |
| 1 3 269 | 2459 2457 4579 | 8 24569 569 |
|--------------+-----------------------+---------------------|
| 6 49 1 | 3459 3457 34579 | 2 #3579 8 |
| 7 29 35 | 23569 8 3569 | 1 #3569 4 |
| 8 249 #35 | 1 23457 345679 |#3569 #35679 #35679 |
*------------------------------------------------------------*
The pairs 35 in r3c8 and r9c3 are a remote naked pair by the empty rectangle in box 9.
This kills 35 in r469c8 and r9c56.
- Code: Select all
*------------------------------------------------------------*
| 3 5 8 | 7 1 2 | 469 469 69 |
| 9 1 7 | 3456 345 3456 |#35 8 2 |
| 2 6 4 |#35 9 8 | 7 *35 1 |
|--------------+-----------------------+---------------------|
| 4 8 29 |*2359 6 1 |*359 279 35-79 |
| 5 7 269 | 8 234 349 | 3469 1 369 |
| 1 3 269 | 2459 2457 4579 | 8 2469 569 |
|--------------+-----------------------+---------------------|
| 6 49 1 | 3459 3457 34579 | 2 3579 8 |
| 7 29 35 | 23569 8 3569 | 1 3569 4 |
| 8 249 35 | 1 247 4679 | 3569 679 35679 |
*------------------------------------------------------------*
Now in row 4 35 is only in columns 479. Since r2c7 and r3c4 must have the same value 3 or 5, also r4c9 can only be 3 or 5.
A kite 3 finally solves the puzzle.