The key to solving it is column 4.
Pencilmarks for the grid: (note: these are the initial pencilmarks. Some canidates can be removed. (for example the 2 and the 3 in r1c2 and r3c2.)
- Code: Select all
5 2349 23 | 6 23478 2379 | 237 2378 1
1 6 7 | 5 238 23 | 9 238 4
8 2349 23 | 23479 1 2379 | 237 5 6
------------+--------------------+-------------
4 1 6 | 237 2357 2357 | 8 37 9
3 78 5 | 4789 4678 679 | 1 67 2
2 78 9 | 1378 3678 1367 | 367 4 5
------------+--------------------+-------------
6 25 8 | 127 9 1257 | 4 12 3
9 23 4 | 123 236 8 | 5 126 7
7 235 1 | 23 2356 4 | 26 9 8
If you look carefully at column 4 then you see a hidden triple and a naked quad.
The triple: 489: there are exactly three cells that can have one of those 3 numbers. (r3c4, r5c4, r6c4)
Naked quad: 1237: there are exactly 4 cells that share the same 4 candidates. (r4c4, r7c4, r8c4, r9c4)
This allows you to remove the following candidates:
- 237 from r3c4 leaving 49
- 7 from r5c4 leaving 489
- 137 from r6c4 leaving 8
Leaving you with this grid:
- Code: Select all
5 2349 23 | 6 23478 2379 | 237 2378 1
1 6 7 | 5 238 23 | 9 238 4
8 2349 23 | 49 1 2379 | 237 5 6
------------+--------------------+-------------
4 1 6 | 237 2357 2357 | 8 37 9
3 78 5 | 489 4678 679 | 1 67 2
2 78 9 | 8 3678 1367 | 367 4 5
------------+--------------------+-------------
6 25 8 | 127 9 1257 | 4 12 3
9 23 4 | 123 236 8 | 5 126 7
7 235 1 | 23 2356 4 | 26 9 8