SKFR ER=6.6

Post puzzles for others to solve here.

SKFR ER=6.6

Postby yzfwsf » Wed Aug 04, 2021 1:37 am

Code: Select all
..9.8..5.7..6....9.6...28.42.....7......47.2..5..3.....9.1....2.....41..5......7.

Code: Select all
.----------------------.----------------------.---------------------.
| 134    1234   9      | 347     8      13    | 236   5       1367  |
| 7      12348  123458 | 6       15     135   | 23    13      9     |
| 13     6      135    | 3579    1579   2     | 8     13      4     |
:----------------------+----------------------+---------------------:
| 2      1348   13468  | 589     1569   15689 | 7     134689  13568 |
| 13689  138    1368   | 589     4      7     | 3569  2       13568 |
| 14689  5      14678  | 289     3      1689  | 469   14689   168   |
:----------------------+----------------------+---------------------:
| 3468   9      34678  | 1       567    3568  | 3456  3468    2     |
| 368    2378   23678  | 235789  25679  4     | 1     3689    3568  |
| 5      12348  123468 | 2389    269    3689  | 3469  7       368   |
'----------------------'----------------------'---------------------'
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: SKFR ER=6.6

Postby pjb » Wed Aug 04, 2021 4:30 am

3 steps; surely there is something shorter ...

1) BUG-lite (type 1) at r1c16, r2c68, r3c18 => -13 r2c6;
(21 singles)
2) (4)r4c8 = (4)r4c23 - (4)r6c1 = (4)r7c1 - (4)r7c8 => -4 r7c8;
(37 singles/basics)
3) (6)r4c5 = (6)r89c5 - (6)r7c6 = (6)r7c8 => -6 r4c8; stte

Phil
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia

Re: SKFR ER=6.6

Postby denis_berthier » Thu Aug 05, 2021 4:49 am

.
This is an interesting example of a moderately difficult puzzle (SER = 6.6), where using uniqueness significantly changes the rating: from Z4 without it to finned-x-wings with it.
Moreover, there's no whip 1- or 2- step solution without using uniqueness.

1) Simplest-first solution, in Z4 (only reversible chains used), with no assumption of uniqueness
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 13     2      9      ! 4      8      13     ! 6      5      7      !
   ! 7      1348   1348   ! 6      15     135    ! 2      13     9      !
   ! 13     6      5      ! 7      9      2      ! 8      13     4      !
   +----------------------+----------------------+----------------------+
   ! 2      1348   13468  ! 589    156    15689  ! 7      4689   13568  !
   ! 13689  138    1368   ! 589    4      7      ! 359    2      13568  !
   ! 14689  5      7      ! 2      3      1689   ! 49     4689   168    !
   +----------------------+----------------------+----------------------+
   ! 3468   9      3468   ! 1      7      568    ! 345    468    2      !
   ! 368    7      2368   ! 3589   256    4      ! 1      689    3568   !
   ! 5      1348   123468 ! 389    26     689    ! 349    7      368    !
   +----------------------+----------------------+----------------------+


Code: Select all
naked-pairs-in-a-column: c1{r1 r3}{n1 n3} ==> r8c1 ≠ 3, r7c1 ≠ 3, r6c1 ≠ 1, r5c1 ≠ 3, r5c1 ≠ 1
whip[1]: c1n1{r3 .} ==> r2c2 ≠ 1, r2c3 ≠ 1
whip[1]: c1n3{r3 .} ==> r2c2 ≠ 3, r2c3 ≠ 3
finned-x-wing-in-rows: n9{r8 r4}{c8 c4} ==> r5c4 ≠ 9
finned-x-wing-in-columns: n4{c1 c8}{r7 r6} ==> r6c7 ≠ 4
singles ==> r6c7 = 9,r8c8 = 9, r5c1 = 9
whip[1]: c7n4{r9 .} ==> r7c8 ≠ 4
z-chain[3]: r5n6{c3 c9} - c8n6{r4 r6} - c1n6{r6 .} ==> r7c3 ≠ 6
z-chain[4]: b5n6{r4c6 r6c6} - r7n6{c6 c1} - c1n4{r7 r6} - c8n4{r6 .} ==> r4c8 ≠ 6
z-chain[4]: c8n6{r7 r6} - r6n4{c8 c1} - r7c1{n4 n8} - r7c8{n8 .} ==> r7c6 ≠ 6
biv-chain[3]: b9n5{r8c9 r7c7} - r7c6{n5 n8} - r7c8{n8 n6} ==> r8c9 ≠ 6
biv-chain[3]: r7c6{n8 n5} - c7n5{r7 r5} - r5c4{n5 n8} ==> r8c4 ≠ 8, r9c4 ≠ 8, r4c6 ≠ 8, r6c6 ≠ 8
biv-chain[3]: r8c4{n3 n5} - r7n5{c6 c7} - r7n3{c7 c3} ==> r8c3 ≠ 3
z-chain[3]: r6n8{c9 c1} - r6n4{c1 c8} - r4c8{n4 .} ==> r4c9 ≠ 8
z-chain[3]: r6n8{c9 c1} - r6n4{c1 c8} - r4c8{n4 .} ==> r5c9 ≠ 8
z-chain[3]: r8n8{c3 c9} - b9n5{r8c9 r7c7} - r7c6{n5 .} ==> r7c1 ≠ 8
biv-chain[3]: r6n4{c8 c1} - r7c1{n4 n6} - c8n6{r7 r6} ==> r6c8 ≠ 8
biv-chain[3]: r6c8{n6 n4} - r4c8{n4 n8} - r6n8{c9 c1} ==> r6c1 ≠ 6
whip[1]: c1n6{r8 .} ==> r8c3 ≠ 6, r9c3 ≠ 6
biv-chain[3]: r6c1{n8 n4} - r6c8{n4 n6} - r5n6{c9 c3} ==> r5c3 ≠ 8
z-chain[3]: r8n8{c3 c9} - b9n5{r8c9 r7c7} - r7n3{c7 .} ==> r7c3 ≠ 8
biv-chain[4]: r7c3{n3 n4} - r7c1{n4 n6} - c8n6{r7 r6} - r5n6{c9 c3} ==> r5c3 ≠ 3
biv-chain[4]: c7n5{r5 r7} - r7c6{n5 n8} - c8n8{r7 r4} - c4n8{r4 r5} ==> r5c4 ≠ 5
naked-single ==> r5c4 = 8
whip[1]: r5n5{c9 .} ==> r4c9 ≠ 5
biv-chain[4]: r5n5{c9 c7} - r7n5{c7 c6} - r7n8{c6 c8} - b9n6{r7c8 r9c9} ==> r5c9 ≠ 6
hidden-single-in-a-row ==> r5c3 = 6
z-chain[4]: r8n8{c3 c9} - c9n5{r8 r5} - r5n1{c9 c2} - r9n1{c2 .} ==> r9c3 ≠ 8
z-chain[4]: c6n9{r9 r4} - c6n6{r4 r6} - c8n6{r6 r7} - r7n8{c8 .} ==> r9c6 ≠ 8
stte


3) Simplest-first solution, requiring only finned x-wings, after the two pjb's Lite Bug eliminations
Notice that SudoRules doesn't have Lite Bugs, but the two eliminations can be simulated by setting:
(bind ?*simulated-eliminations* (create$ 126 326))


Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1     2     9     ! 4     8     3     ! 6     5     7     !
   ! 7     48    48    ! 6     1     5     ! 2     3     9     !
   ! 3     6     5     ! 7     9     2     ! 8     1     4     !
   +-------------------+-------------------+-------------------+
   ! 2     1348  1468  ! 589   56    1689  ! 7     4689  13568 !
   ! 689   138   168   ! 589   4     7     ! 39    2     13568 !
   ! 4689  5     7     ! 2     3     1689  ! 49    4689  168   !
   +-------------------+-------------------+-------------------+
   ! 468   9     3     ! 1     7     68    ! 5     468   2     !
   ! 68    7     268   ! 3589  256   4     ! 1     689   368   !
   ! 5     148   12468 ! 389   26    689   ! 349   7     368   !
   +-------------------+-------------------+-------------------+

Code: Select all
finned-x-wing-in-rows: n9{r8 r4}{c8 c4} ==> r5c4 ≠ 9
finned-x-wing-in-rows: n4{r7 r4}{c8 c1} ==> r6c1 ≠ 4
singles ==> r7c1 = 4, r9c7 = 4, r6c7 = 9, r5c7 = 3, r4c2 = 3, r4c3 = 4
naked-single ==> r2c3 = 8, r2c2 = 4, r6c8 = 4, r8c8 = 9, r5c1 = 9,r5c9 ≠ 1
finned-x-wing-in-columns: n6{c8 c5}{r4 r7} ==> r7c6 ≠ 6
stte



3) Two-step solution using Forcing[3]-T&E:
Starting from the resolution state after Singles and whips[1]:
Code: Select all
FORCING[3]-T&E(BRT) applied to trivalue candidates n4r4c2, n4r4c3 and n4r6c1 :
===> 3 values decided in the three cases: n9r6c7 n9r8c8 n9r5c1
===> 16 candidates eliminated in the three cases: n9r4c8 n1r5c1 n3r5c1 n6r5c1 n8r5c1 n9r5c4 n9r5c7 n9r6c1 n9r6c6 n4r6c7 n9r6c8 n4r7c8 n9r8c4 n6r8c8 n8r8c8 n9r9c7

CURRENT RESOLUTION STATE:
   13        2         9         4         8         13        6         5         7
   7         1348      1348      6         15        135       2         13        9
   13        6         5         7         9         2         8         13        4
   2         1348      13468     589       156       15689     7         468       13568
   9         138       1368      58        4         7         35        2         13568
   1468      5         7         2         3         168       9         468       168
   3468      9         3468      1         7         568       345       68        2
   368       7         2368      358       256       4         1         9         3568
   5         1348      123468    389       26        689       34        7         368


FORCING[3]-T&E(BRT) applied to trivalue candidates n5r7c6, n5r8c4 and n5r8c5 :
===> 9 values decided in the three cases: n8r5c4 n2r9c5 n2r8c3 n6r5c3 n1r3c8 n3r2c8 n3r1c6 n1r9c3 n8r2c3
===> 59 candidates eliminated in the three cases: n3r1c1 n1r1c6 n1r2c2 n3r2c2 n8r2c2 n1r2c3 n3r2c3 n4r2c3 n3r2c6 n1r2c8 n1r3c1 n3r3c8 n1r4c2 n4r4c2 n1r4c3 n3r4c3 n6r4c3 n8r4c3 n8r4c4 n5r4c5 n5r4c6 n6r4c6 n8r4c6 n6r4c9 n8r4c9 n8r5c2 n1r5c3 n3r5c3 n8r5c3 n5r5c4 n3r5c9 n6r5c9 n8r5c9 n6r6c1 n8r6c6 n6r6c8 n3r7c1 n8r7c1 n6r7c3 n8r7c3 n6r7c6 n3r7c7 n3r8c3 n6r8c3 n8r8c3 n8r8c4 n2r8c5 n3r8c9 n6r8c9 n1r9c2 n3r9c2 n2r9c3 n3r9c3 n4r9c3 n6r9c3 n8r9c3 n8r9c4 n6r9c5 n8r9c9

CURRENT RESOLUTION STATE:
   1         2         9         4         8         3         6         5         7
   7         4         8         6         15        15        2         3         9
   3         6         5         7         9         2         8         1         4
   2         38        4         59        16        19        7         468       135
   9         13        6         8         4         7         35        2         15
   148       5         7         2         3         16        9         48        168
   46        9         34        1         7         58        45        68        2
   368       7         2         35        56        4         1         9         58
   5         48        1         39        2         689       34        7         36

stte


FORCING[3]-T&E(BRT) can be re-formulated in terms of conjugated tracks or of kites.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: SKFR ER=6.6

Postby DEFISE » Thu Aug 05, 2021 5:30 pm

Hi Denis,
I don't like to use uniqueness but I like trying to reduce the number of steps:

Hidden Text: Show
Singles: 2r6c4, 7r6c3, 7r7c5, 7r3c4, 7r1c9, 6r1c7, 2r1c2, 2r2c7, 9r3c5, 5r3c3, 7r8c2, 4r1c4
Bloc/line: 3c4b8 => -3r7c6 -3r9c6
Bloc/line: 1c9b6 => -1r4c8 -1r6c8
Bloc/line: 3b3c8 => -3r4c8 -3r7c8 -3r8c8

whip[2]: c8n4{r4 r7}- c1n4{r7 .} => -4r6c7

Singles: 9r6c7, 9r5c1, 9r8c8
Bloc/line: 4c7b9 => -4r7c8
And the following is equivalent to your second Forcing[3], no more ugly nor less ugly, but, in my opinion, easier to check:
T&E(BRT) applied to 5r7c6 => error => -5r7c6
T&E(BRT) applied to 5r8c4 => error => -5r8c4
STTE

N.B: the two T&E can be improved like this:

whip[12]: b9n5{r7c7 r8c9}- b6n5{r4c9 r5c7}- r5c4{n5 n8}- c6n8{r4 r9}- b9n8{r9c9 r7c8}- b9n6{r7c8 r9c9}- r5n6{c9 c3}- r7n6{c3 c1}- c1n4{r7 r6}- r6c8{n4 n6}- c6n6{r6 r4}- c6n9{r4 .}
=> -5r7c6

Singles: 5r7c7, 3r5c7, 4r9c7
Bloc/line: 3r7b7 => -3r8c1 -3r8c3 -3r9c2 -3r9c3

whip[5]: r5c4{n5 n8}- r5c2{n8 n1}- r9c2{n1 n8}- r8n8{c1 c9}- r8n3{c9 .} => -5r8c4

STTE.
DEFISE
 
Posts: 286
Joined: 16 April 2020
Location: France

Re: SKFR ER=6.6

Postby denis_berthier » Fri Aug 06, 2021 6:23 am

Hi François

DEFISE wrote:I don't like to use uniqueness but I like trying to reduce the number of steps

So do I, but not at the cost of having much longer chains than in the simplest-first solution.
My Forcing[3]-T&E solution was more of a joke than a serious solution.

DEFISE wrote:whip[2]: c8n4{r4 r7}- c1n4{r7 .} => -4r6c7
Singles: 9r6c7, 9r5c1, 9r8c8
Bloc/line: 4c7b9 => -4r7c8
whip[12]: b9n5{r7c7 r8c9}- b6n5{r4c9 r5c7}- r5c4{n5 n8}- c6n8{r4 r9}- b9n8{r9c9 r7c8}- b9n6{r7c8 r9c9}- r5n6{c9 c3}- r7n6{c3 c1}- c1n4{r7 r6}- r6c8{n4 n6}- c6n6{r6 r4}- c6n9{r4 .}
=> -5r7c6
Singles: 5r7c7, 3r5c7, 4r9c7
Bloc/line: 3r7b7 => -3r8c1 -3r8c3 -3r9c2 -3r9c3
whip[5]: r5c4{n5 n8}- r5c2{n8 n1}- r9c2{n1 n8}- r8n8{c1 c9}- r8n3{c9 .} => -5r8c4

As you know, I count this as 3 steps, because there's no serious reason for not counting some Subsets (indeed, the only reason ever advocated for this is the existence of an antiquated software, "simple sudoku").
In the present case, there's no real 2-step solution with whips[≤15] (a totally absurd length for such an easy puzzle).
I haven't tried my fewer steps implementation on this puzzle. I wonder if I can get 3 or 4 steps with whips[≤5]. But my Mac is running other things; I'll see later.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: SKFR ER=6.6

Postby DEFISE » Fri Aug 06, 2021 8:48 am

denis_berthier wrote:My Forcing[3]-T&E solution was more of a joke than a serious solution.

I understood that well but I wonder why you consider a Forcing [3] as a single step, knowing that it requires 3 T&E.
Indeed, my solution has 3 steps, it was found by my "Few Steps" program with 10 tries.
There is no 2 steps solution with whips or braids if we consider whip [1] as non-step and subsets as steps.
DEFISE
 
Posts: 286
Joined: 16 April 2020
Location: France

Re: SKFR ER=6.6

Postby denis_berthier » Fri Aug 06, 2021 12:10 pm

DEFISE wrote:
denis_berthier wrote:My Forcing[3]-T&E solution was more of a joke than a serious solution.

I understood that well but I wonder why you consider a Forcing [3] as a single step, knowing that it requires 3 T&E.

It's just one more example that the notion of a step has no real meaning. Some people consider a kite as 1 step; but a kite does exactly the same thing as FTE. Similarly, conjugated tracks do the same as FTE; why would they be counted as one step?
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: SKFR ER=6.6

Postby Chrono » Fri Aug 06, 2021 2:02 pm

BUG{13}: R13C1, R12C6, R23C8 => R2C6=5
Code: Select all
.--------------------.------------------.------------------.
| 13    2     9      | 4     8    13    | 6    5     7     |
| 7     48    48     | 6     15   135   | 2    13    9     |
| 13    6     5      | 7     9    2     | 8    13    4     |
:--------------------+------------------+------------------:
| 2     1348  13468  | 589   156  15689 | 7    4689  13568 |
| 689   138   1368   | 589   4    7     | 359  2     13568 |
| 4689  5     7      | 2     3    1689  | 49   4689  168   |
:--------------------+------------------+------------------:
| 468   9     3468   | 1     7    568   | 345  468   2     |
| 68    7     2368   | 3589  256  4     | 1    689   3568  |
| 5     1348  123468 | 389   26   689   | 349  7     368   |
'--------------------'------------------'------------------'

Finned X-Wing{4}: R67C18 with fin on R4C8 => R6C7<>4
Code: Select all
.-------------------.-----------------.------------------.
| 1     2     9     | 4     8    3    | 6    5     7     |
| 7     48    48    | 6     1    5    | 2    3     9     |
| 3     6     5     | 7     9    2    | 8    1     4     |
:-------------------+-----------------+------------------:
| 2     1348  1468  | 589   56   1689 | 7    4689  13568 |
| 689   138   168   | 589   4    7    | 39   2     13568 |
| 4689  5     7     | 2     3    1689 | 49   4689  168   |
:-------------------+-----------------+------------------:
| 468   9     3     | 1     7    68   | 5    468   2     |
| 68    7     268   | 3589  256  4    | 1    689   368   |
| 5     148   12468 | 389   26   689  | 349  7     368   |
'-------------------'-----------------'------------------'

Empty Rectangle: R7C8(6)-R4C8(6)=R4C56(6)-R6C6(6) => R7C6<>6
Code: Select all
.-------------.----------------.-------------.
| 1   2   9   | 4    8    3    | 6  5   7    |
| 7   4   8   | 6    1    5    | 2  3   9    |
| 3   6   5   | 7    9    2    | 8  1   4    |
:-------------+----------------+-------------:
| 2   3   4   | 589  56   1689 | 7  68  1568 |
| 9   18  16  | 58   4    7    | 3  2   568  |
| 68  5   7   | 2    3    168  | 9  4   168  |
:-------------+----------------+-------------:
| 4   9   3   | 1    7    68   | 5  68  2    |
| 68  7   26  | 358  256  4    | 1  9   368  |
| 5   18  126 | 389  26   689  | 4  7   368  |
'-------------'----------------'-------------'
Chrono
 
Posts: 4
Joined: 06 August 2021

Re: SKFR ER=6.6

Postby denis_berthier » Sat Aug 07, 2021 11:56 am

.
I tried the fewest steps algorithm with all-chains-max-length = 6. Considering there's a solution in Z4, this may already be allowing too large chains. But this was more to test my algorithm than anything else. (This new version, not yet published, allows Subsets to be present in the rules without generating unwanted steps.)

The fewest steps I find is 7 (but I did only 3 tries):

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 13     2      9      ! 4      8      13     ! 6      5      7      !
   ! 7      1348   1348   ! 6      15     135    ! 2      13     9      !
   ! 13     6      5      ! 7      9      2      ! 8      13     4      !
   +----------------------+----------------------+----------------------+
   ! 2      1348   13468  ! 589    156    15689  ! 7      4689   13568  !
   ! 13689  138    1368   ! 589    4      7      ! 359    2      13568  !
   ! 14689  5      7      ! 2      3      1689   ! 49     4689   168    !
   +----------------------+----------------------+----------------------+
   ! 3468   9      3468   ! 1      7      568    ! 345    468    2      !
   ! 368    7      2368   ! 3589   256    4      ! 1      689    3568   !
   ! 5      1348   123468 ! 389    26     689    ! 349    7      368    !
   +----------------------+----------------------+----------------------+


===> STEP #1
finned-x-wing-in-columns: n4{c1 c7}{r6 r7} ==> r7c8 ≠ 4
whip[1]: b9n4{r9c7 .} ==> r6c7 ≠ 4
naked-single ==> r6c7 = 9
hidden-single-in-a-column ==> r8c8 = 9
hidden-single-in-a-block ==> r5c1 = 9

===> STEP #2
naked-pairs-in-a-block: b1{r1c1 r3c1}{n1 n3} ==> r2c3 ≠ 3, r2c3 ≠ 1, r2c2 ≠ 3, r2c2 ≠ 1
whip[1]: b1n1{r3c1 .} ==> r6c1 ≠ 1
whip[1]: b1n3{r3c1 .} ==> r7c1 ≠ 3, r8c1 ≠ 3

===> STEP #3
z-chain[5]: r7c8{n6 n8} - r7c1{n8 n4} - r6n4{c1 c8} - c8n6{r6 r4} - c5n6{r4 .} ==> r7c6 ≠ 6

===> STEP #4
biv-chain[3]: r5c4{n8 n5} - c7n5{r5 r7} - r7c6{n5 n8} ==> r8c4 ≠ 8, r4c6 ≠ 8, r6c6 ≠ 8, r9c4 ≠ 8

===> STEP #5
whip[4]: r6n4{c1 c8} - r6n8{c8 c9} - r4c8{n8 n6} - b5n6{r4c5 .} ==> r6c1 ≠ 6
whip[1]: c1n6{r8 .} ==> r7c3 ≠ 6, r8c3 ≠ 6, r9c3 ≠ 6

===> STEP #6
whip[6]: r7c8{n6 n8} - c6n8{r7 r9} - c6n9{r9 r4} - c6n6{r4 r6} - r6c8{n6 n4} - c1n4{r6 .} ==> r7c1 ≠ 6
hidden-single-in-a-block ==> r8c1 = 6
hidden-single-in-a-row ==> r7c8 = 6
whip[1]: b9n8{r9c9 .} ==> r4c9 ≠ 8, r5c9 ≠ 8, r6c9 ≠ 8

===> STEP #7
biv-chain[4]: r5c7{n3 n5} - r7n5{c7 c6} - b8n8{r7c6 r9c6} - r9c9{n8 n3} ==> r4c9 ≠ 3, r5c9 ≠ 3, r7c7 ≠ 3, r9c7 ≠ 3
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris


Return to Puzzles