- Code: Select all
*-----------*
|..5|.2.|.3.|
|31.|..9|.6.|
|..9|...|8.1|
|---+---+---|
|.2.|.9.|...|
|7..|1.3|..2|
|...|.5.|.4.|
|---+---+---|
|4.6|...|2..|
|.5.|2..|.18|
|.3.|.7.|6..|
*-----------*
Play/Print this puzzle online
*-----------*
|..5|.2.|.3.|
|31.|..9|.6.|
|..9|...|8.1|
|---+---+---|
|.2.|.9.|...|
|7..|1.3|..2|
|...|.5.|.4.|
|---+---+---|
|4.6|...|2..|
|.5.|2..|.18|
|.3.|.7.|6..|
*-----------*
.--------------.---------------------.----------------.
| 8 47 5 | 6 2 1 | b49+7 3 79 |
| 3 1 2 | d47+8 a8+4 9 | 47 6 5 |
| 6 47 9 | 5 3 7-4 | 8 2 1 |
:--------------+---------------------+----------------:
| 5 2 c34+8 | c48+7 9 a67+4 | 1 c78 36 |
| 7 69 48 | 1 d46+8 3 | 5 89 2 |
| 1 69 38 | 78 5 2 | 79 4 36 |
:--------------+---------------------+----------------:
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
'--------------'---------------------'----------------'
a: (4)r2c5,r4c6
||
b: (7)r1c7 - r6c7 = r6c4 - (7=64)r48c6
||
c: (87)r4c348 - (7=64)r48c6
||
d: (8)r2c4,r5c5 - (8=4)r2c5
=> -4 r3c6; stte
+------------------+--------------------+------------------+
| 8 47 5 | 6 2 1 | 479 3 79 |
| 3 1 2 | v478* 48* 9 | w47 6 5 |
| 6 47 9 | 5 3 a47 | 8 2 1 |
+------------------+--------------------+------------------+
| 5 2 A348* | u478* 9 47-6 | 1 78 zB36 |
| 7 69 48* | 1 Z468* 3 | 5 89 2 |
| 1 x69 38 | 78 5 2 | x79 4 y36 |
+------------------+--------------------+------------------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 b46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+------------------+--------------------+------------------+
+-------------------+---------------------+--------------------+
| 8 e47 5 | 6 2 1 | 479 3 f79 |
| 3 1 2 | 478 48 9 | 47 6 5 |
| 6 d47 9 | 5 3 c47 | 8 2 1 |
+-------------------+---------------------+--------------------+
| 5 2 348 | 478 9 b467 | 1 78 36 |
| 7 j69 48 | 1 ka6-48 3 | 5 i89 2 |
| 1 69 38 | 78 5 2 | 79 4 36 |
+-------------------+---------------------+--------------------+
| 4 8 6 | 3 1 5 | 2 h79 g79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+-------------------+---------------------+--------------------+
+-----------+-------------+-----------+
| 8 47 5 | 6 2 1 | 479 3 79 |
| 3 1 2 | 478 48 9 | 47 6 5 |
| 6 47 9 | 5 3 47 | 8 2 1 |
+-----------+-------------+-----------+
| 5 2 A348 |A478 9 46-7| 1 A78 36 |
| 7 69 48 | 1 468 3 | 5 89 2 |
| 1 69 B38 |B78 5 2 | 79 4 36 |
+-----------+-------------+-----------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+-----------+-------------+-----------+
+-------------+------------------+-----------------+
| 8 47 5 | 6 2 1 | 49+7 3 9-7 |
| 3 1 2 | 78+4 48 9 | 47 6 5 |
| 6 47 9 | 5 3 47 | 8 2 1 |
+-------------+------------------+-----------------+
| 5 2 38+4 | /478 9 67+4 | 1 78 36 |
| 7 69 /48 | 1 68+4 3 | 5 89 2 |
| 1 69 38 | 78 5 2 | 79 4 36 |
+-------------+------------------+-----------------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+-------------+------------------+-----------------+
+-------------+------------------+-----------------+
| 8 47 5 | 6 2 1 | 49+7 3 9-7 |
| 3 1 2 | 78+4 48 9 | 47 6 5 |
| 6 47 9 | 5 3 47 | 8 2 1 |
+-------------+------------------+-----------------+
| 5 2 38+4 | 4+78 9 67+4 | 1 78 36 |
| 7 69 4+8 | 1 68+4 3 | 5 89 2 |
| 1 69 38 | 78 5 2 | 79 4 36 |
+-------------+------------------+-----------------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+-------------+------------------+-----------------+
7r1c7
||
(4r2c4|4r5c5|4r4c36) - (4=78)r46c4 - (78=4)r2c4 - (4=7)r2c7 => -7r1c9; stte
|| / /
78r35c4 -------------------- /
|| /
896r5c382 - (68=4)r5c5 - r4c4 = 4r2c4 --
blue wrote:For SpAce: More HBUG/BUG-Lite fun ...
(BUG-Lite + 5) in all unfilled cells except for r4c4 and r5c3
7r1c7 =[BUG-Lite]= (4r2c4|4r5c5|4r4c36) - (4=78)r46c4 - (78=4)r2c4 - (4=7)r2c7 => -7r1c9; stte
... or, an "HBUG+8"
"HBUG+8"
- Code: Select all
7r1c7
||
(4r2c4|4r5c5|4r4c36) - (4=78)r46c4 - (78=4)r2c4 - (4=7)r2c7 => -7r1c9; stte
|| / /
78r35c4 -------------------- /
|| /
896r5c382 - (68=4)r5c5 - r4c4 = 4r2c4 --
... and the HBUG/BUG-Lite is a DP with no solution.
+------------------+--------------------+------------------+
| 8 47* 5 | 6 2 1 | a479# 3 79* |
| 3 1 2 | b478# 48 9 | 47* 6 5 |
| 6 47* 9 | 5 3 c47* | 8 2 1 |
+------------------+--------------------+------------------+
| 5 2 348 | 478* 9 d467* | 1 a78# e36 |
| 7 69 48 | 1 468 3 | 5 89 2 |
| 1 69 f38 | f78* 5 2 | 9-7* 4 f36 |
+------------------+--------------------+------------------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+------------------+--------------------+------------------+
Cenoman wrote:Another kind of fun:
+-------------+------------------+----------------+
| 8 /47 5 | 6 2 1 | 79+4 3 79 |
| 3 1 2 | /478 /48 9 | /47 6 5 |
| 6 /47 9 | 5 3 /47 | 8 2 1 |
+-------------+------------------+----------------+
| 5 2 34+8 | 78+4 9 46+7 | 1 78 3(6)|
| 7 69 48 | 1 46+8 3 | 5 89 2 |
| 1 (6)9 38 | 78 5 2 | 79 4 3-6 |
+-------------+------------------+----------------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+-------------+------------------+----------------+
4r1c7 --------------------------
|| \
(4r4c4|8r5c5) ---- \
|| \ \
8r4c3 - (8=4)r5c3 - 4r5c5 \
|| || \
|| 4r2c5 - r2c7 = (4-9)r1c7 = 9r6c7 - (9=6)r6c2
|| ||
|| 4r8c5 - (4=6)r8c6 - 6r4c6 = 6r4c9
|| /
7r4c6 -------------------------------
SpAce wrote:... and the HBUG/BUG-Lite is a DP with no solution.
I guess this observation is related to the "idle talk" part of your earlier post. It seemed interesting, but I kind of missed your point there. Is there a distinction between no-solution and binary-solution BUG-type DPs? I've thought that normal BUGs and BUG-Lites can be either kind.
That's another unintuitive thing about BUGs, by the way. I bet most people would think that BUGs are always binary-solution DPs, and I thought so too until Leren thankfully educated me.
Cenoman wrote:Another kind of fun:
In the 7s, 9-link oddagon (*) having three guardians (#):
(7)r1c7|r4c8==(7)r2c4 - r3c6 = (7-6)r4c6 = r4c9 - (6=387)r6c349 => -7 r6c7; ste
.-------------.---------------------.-------------------.
| 8 47 5 | 6 2 1 | a49(#7) 3 79 |
| 3 1 2 | 478* 48 9 | 47* 6 5 |
| 6 47 9 | 5 3 47 | 8 2 1 |
:-------------+---------------------+-------------------:
| 5 2 348 | 478* 9 b46#7 | 1 78* b36 |
| 7 69 48 | 1 468 3 | 5 89 2 |
| 1 69 c38 | ac8(#7) 5 2 | 9-7* 4 c36 |
:-------------+---------------------+-------------------:
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
'-------------'---------------------'-------------------'
blue wrote:For SpAce: Another "heavy" BUG-Lite, leading to a single elimination and an stte finish.
.----------------.----------------------.-----------------.
| 8 /47 5 | 6 2 1 | 79+4 3 79 |
| 3 1 2 | bd/4#78 /8#4 9 | a/4#7 6 5 |
| 6 /47 9 | 5 3 /7#4 | 8 2 1 |
:----------------+----------------------+-----------------:
| 5 2 e34+8 | 78+4 9 c46+7 | 1 78 3(6) |
| 7 69 48 | 1 d46+8 3 | 5 89 2 |
| 1 (6)9 38 | 78 5 2 | 79 4 3-6 |
:----------------+----------------------+-----------------:
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
'----------------'----------------------'-----------------'
a: (#7)r2c7 - (7=96)r6c72
||
b: (#7)r2c4 - r3c6 = (76)r4c69
||
c: (+7-6)r4c6 = (6)r4c9
||
c: (#8)r2c4|(+8)r5c5 - (8=796)r6c472
||
d: (+8)r4c3 - (8=7)r4c8 - (7=96)r6c72
=> -6 r6c9; stte
Yes ... related to the "idle talk".
There's no distinction, when it comes to the BUG-logic being valid -- the bit about "if it has one solution, then it has two or more".
When a BUG+n pattern leads to an elimination, the usual thing to do, is say that the elimination is valid, based on a/the assumption that the puzzle has a unique solution.
If you knew up front (or could easily show) that the BUG part of the BUG+n was a no-solution DP, then (of course) you could claim the elimination without relying on uniqueness.
The BUG-Lite above, BTW, has two solutions.
With that, there's no way to fill the '/' cells that is both self-consistent and compatible with the BUG-Lite.
The situation isn't helped by things like this: HoDoKu -- copying a link provided by rjamil in another thread.
SpAce wrote:Those three non-guardians in box 5 make it look like it can't be valid, but it sure is (I think). However, would you agree that it's kind of degenerate...
...a bit more conventional variant: 5-link Oddagon (7)r24,c47,b6 with three guardians...
+--------------------+-----------------------+------------------+
| 8 47* 5 | 6 2 1 | 479* 3 79 |
| 3 1 2 | 478* 48* 9 | 47* 6 5 |
| 6 47* 9 | 5 3 47* | 8 2 1 |
+--------------------+-----------------------+------------------+
| 5 2 348* | 478* 9 Zd46-7* | 1 78 Yc36 |
| 7 69 48* | 1 468* 3 | 5 89 2 |
| 1 69 XAb38 | WzBb78 5 2 |Ya79 4 Xb36 |
+--------------------+-----------------------+------------------+
| 4 8 6 | 3 1 5 | 2 79 79 |
| 9 5 7 | 2 46 46 | 3 1 8 |
| 2 3 1 | 9 7 8 | 6 5 4 |
+--------------------+-----------------------+------------------+
SpAce wrote:blue's BUG-Lite+5 using mixed +internals/#externals
a: (#7)r2c7 - (7=96)r6c72
||
b: (#7)r2c4 - r3c6 = (76)r4c69
||
c: (+7-6)r4c6 = (6)r4c9
||
c: (#8)r2c4|(+8)r5c5 - (8=796)r6c472
||
d: (+8)r4c3 - (8=7)r4c8 - (7=96)r6c72
=> -6 r6c9; stte
Does that make any sense? Cenoman, feel free to comment too....
Cenoman wrote:Why do things simple when you can do them complex ?
I suspected that with its 14 candidates in digit 7, this puzzle had many other oddagons. I started searching 5-links , then 7-links but found only some with uneasy sets of guardians. And spotting the 9-links, I found it funny and stop searching others.
In more complex solutions, there was also DP(47) r1c27, r2c47, r3c26, r4c46 with four guardians 9r1c7, 8r2c4, 8r4c4, 6r4c6
Combining this DP(47) with DP(48) of my first post, one get's a MUG (478) b12345, also with four guardians: 9r1c7, 3r4c3, 6r4c6, 6r5c5
a separate response to another subject. ... To me, yes that makes sense. In the set of internals listed by blue, 4r4c4 is AIC-resistant (I need a kraken, as well as blue). So you suggest to replace it by the externals of the pair (78)r46c4 in c4. Instead of five internal guardians, you have six mixed guardians (no concern with replacing 4r1c7 by 7r2c7). Now I noticed that 7r2c4 and 8r2c4 have the same parity as 7r4c6 and 8r5c5 respectively. De facto, 7r4c6 and 8r5c5 are external guardians of the pair (78)r46c4 in b5. So I suggest to eventually keep as guardians of this BUG-lite+5 the following four (mixed externals-internals) guardians: #7r2c7, #+7r4c6, #+8r5c5, +8r4c3, with the related four chains according to your proposal. They cover extensively all the pairs and bivalue cells of the BUG-lite.
My turn to raise the question: does that make any sense?
SpAce wrote:. My only concern is that it gets harder and harder to understand the more such equivalences are used to reduce the set of guardians. It's also more error-prone for the writer.