September 24, 2018

Post puzzles for others to solve here.

September 24, 2018

Postby ArkieTech » Mon Sep 24, 2018 10:46 am

Code: Select all
 *-----------*
 |...|39.|71.|
 |...|...|8.3|
 |...|1.2|.9.|
 |---+---+---|
 |23.|8..|...|
 |..6|9.3|4..|
 |...|..6|.38|
 |---+---+---|
 |.1.|5.8|...|
 |3.4|...|...|
 |.57|.49|...|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 2955
Joined: 29 May 2006
Location: NW Arkansas USA

Re: September 24, 2018

Postby SpAce » Mon Sep 24, 2018 1:28 pm

All I found was horrible nets, while a simple answer was sitting right in front of me. Had to cheat to see it, so I'll sit this one out. I would have probably seen it more easily on paper, but it takes too much time to do daily puzzles like that :(
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 24, 2018

Postby SCLT » Mon Sep 24, 2018 1:32 pm

A pretty chain with a group node at one end and an ALS at the other:

Code: Select all
*------------------------*-------------------*-----------------------*
|  46      246    8      |  3     9      5   |  7      1      246    |
|  159     29     1259   |  4     6      7   |  8     f25     3      |
|  4567    467    3      |  1     8      2   |  56     9      456    |
*------------------------+-------------------+-----------------------*
|  2       3      159    |  8     157    4   |  1569   567    569    |
| e1578   e78     6      |  9     1257   3   |  4     f257    25     |
| d14579  d479    159    | c27    1257   6   | b1259   3      8      |
*------------------------+-------------------+-----------------------*
|  69      1      29     |  5     3      8   | a269    4      7      |
|  3       2689   4      |  267   27     1   | a2569   2568   2569   |
|  68      5      7      |  26    4      9   |  3      68-2   1      |
*------------------------+-------------------+-----------------------*


2c7r78 = r6c7 - (2=7)r6c4 - r6c12 = r5c12 - (7=25)c8r25 => -2 r9c8 ; stte
SCLT
 
Posts: 46
Joined: 06 August 2013

Re: September 24, 2018

Postby SpAce » Mon Sep 24, 2018 2:25 pm

SCLT wrote:A pretty chain with a group node at one end and an ALS at the other:

Yep, it's pretty, and exactly the kind of chain I love to find. That's why I'm pissed I didn't see it. With my paper mark-up I probably would have, but I use Hodoku for quick solving and don't see those kinds of links as easily.

2c7r78 = r6c7 - (2=7)r6c4 - r6c12 = r5c12 - (7=25)c8r25 => -2 r9c8 ; stte

You could eliminate two with that AIC: -2 r89c8. Hodoku only reports one, though, because it uses a DNL instead of an AIC. Did you cheat too? ;)
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 24, 2018

Postby SCLT » Mon Sep 24, 2018 2:52 pm

SpAce wrote:You could eliminate two with that AIC: -2 r89c8. Hodoku only reports one, though, because it uses a DNL instead of an AIC. Did you cheat too? ;)


Ah, well-spotted. I didn't cheat - this is a "lost in translation" elimination.

My solution as I originally found it was a Kraken cell starting from r6c4 which proved that r9c4 must be a 2. But since the starting cell is bivalue this can be trivially re-written as an AIC. Then I noticed that both halves of the chain went through 2r9c8 as a common link so I could shorten the final chain and change the result from a placement in r9c4 to an elimination in r9c8. I just didn't then look for further eliminations resulting from the now quite concise chain.

As an aside, I can't actually get my copy of Hodoku to find this chain (or anything similar) at all... :?
SCLT
 
Posts: 46
Joined: 06 August 2013

Re: September 24, 2018

Postby SpAce » Mon Sep 24, 2018 3:15 pm

SCLT wrote:Ah, well-spotted. I didn't cheat - this is a "lost in translation" elimination.

Great job! And sorry for the tongue-in-the-cheek question -- I was SO hoping that you'd cheated too!!! :D

As an aside, I can't actually get my copy of Hodoku to find this chain (or anything similar) at all... :?

You probably haven't turned on the "Allow ALS in chains" option (Preferences/Steps), which I think is off by default. I had the same problem until 200e200w advised me. After turning it on Hodoku started finding wonderful chains. It will find even more if you also check "Allow overlap" (in ALS general).

Btw, does anyone know what those "Only one chain per elimination" and "Only one step per elimination" options mean?
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 24, 2018

Postby Cenoman » Mon Sep 24, 2018 3:19 pm

As a simple solution, grouped kite: (2)r9c4 = r9c8 - r78c7 = r6c7 => -2 r6c4: lclste
Too simple (?), so
Code: Select all
 +------------------------+--------------------+-----------------------+
 |  46      246    8      |  3     9      5    |  7      1      246    |
 |  159     29     1259   |  4     6      7    |  8      25#    3      |
 |  4567    467    3      |  1     8      2    |  56     9      456    |
 +------------------------+--------------------+-----------------------+
 |  2       3      159    |  8     157    4    |  1569   567#   569    |
 |  1578    78     6      |  9     1257   3    |  4      257#   25     |
 |  14579   479    159    |  27    1257   6    |  1259   3      8      |
 +------------------------+--------------------+-----------------------+
 |  69      1      29     |  5     3      8    |  269    4      7      |
 |  3       2689   4      |  267*  27#    1    |  2569   2568*  2569   |
 |  68      5      7      |  26*   4      9    |  3      268*   1      |
 +------------------------+--------------------+-----------------------+

UR(26)r89c48 using externals
(2)r25c8
(6-7)r4c8 = r4c5 - (7=2)r6c4 - r5c5 = r5c89 - r6c7 = (2)r78c7
(6-7)r4c8 = r4c5 - (7=2)r6c4 - r6c7 = (2)r78c7
(2)r8c5 - r5c5 = r5c89 - r6c7 = (2)r78c7
=> -2 r89c8; ste (-2 r9c8 alone gives ste finish)

EDIT: second chain shortened as suggested by SpAce
Last edited by Cenoman on Mon Sep 24, 2018 4:09 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 768
Joined: 21 November 2016
Location: Paris, France

Re: September 24, 2018

Postby SpAce » Mon Sep 24, 2018 3:32 pm

Cenoman wrote:As a simple solution, grouped kite: (2)r9c4 = r9c8 - r78c7 = r6c7 => -2 r6c4: lclste

UR(26)r89c48 using externals
(2)r25c8
(6-7)r4c8 = r4c5 - (7=2)r6c4 - r5c5 = r5c89 - r6c7 = (2)r78c7
(2)r8c5 - r5c5 = r5c89 - r6c7 = (2)r78c7
=> -2 r89c8; ste (-2 r9c8 alone gives ste finish)

Very nice, both of them! Btw, you could shorten the second UR chain a bit:

(6-7)r4c8 = r4c5 - (7=2)r6c4 - r6c7 = (2)r78c7
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   
SpAce
 
Posts: 506
Joined: 22 May 2017

Re: September 24, 2018

Postby Cenoman » Mon Sep 24, 2018 4:07 pm

SpAce wrote:Btw, you could shorten the second UR chain a bit:

(6-7)r4c8 = r4c5 - (7=2)r6c4 - r6c7 = (2)r78c7


Yes, indeed !
Cenoman
Cenoman
 
Posts: 768
Joined: 21 November 2016
Location: Paris, France

Re: September 24, 2018

Postby eleven » Mon Sep 24, 2018 9:02 pm

Similar to SCLT's:
Code: Select all
 *-------------------------------------------------------------------*
 |  46      246    8      |  3     9      5  |  7      1      246    |
 |  159     29     1259   |  4     6      7  |  8      25     3      |
 |  4567    467    3      |  1     8      2  | a56     9      456    |
 |------------------------+------------------+-----------------------|
 |  2       3     d159    |  8    d157    4  | c1569   567   c569    |
 |  1578    78     6      |  9     1257   3  |  4      257    25     |
 |  14579   479    159    | e27    1257   6  | b1259   3      8      |
 |------------------------+------------------+-----------------------|
 |  69      1      29     |  5     3      8  | a269    4      7      |
 |  3       2689   4      |  267   27     1  | a2569   2568   2569   |
 |  68      5      7      |  26    4      9  |  3      268    1      |
 *-------------------------------------------------------------------*

2r78c7 = (2-1|9)r6c7 = hp19r4c79 - (1|9=57)r4c35 - (7=2)r6c4 - r6c7 = 2c7r78 => -2r6c7,r8c89,r9c8; stte
(the shorter version would only kill 2r6c7, and locked candidates would be left)
eleven
 
Posts: 1862
Joined: 10 February 2008

Re: September 24, 2018

Postby pjb » Mon Sep 24, 2018 11:08 pm

Code: Select all
 46      246     8      | 3      9      5      | 7      1      246   
 159     29      1259   | 4      6      7      | 8      25     3     
 4567    467     3      | 1      8      2      | 56     9      456   
------------------------+----------------------+---------------------
 2       3       159    | 8     b157    4      | 1569  c567    569   
 1578    78      6      | 9      157-2  3      | 4     d257   d25     
 14579   479     159    |a27     1257   6      | 159-2  3      8     
------------------------+----------------------+---------------------
 69      1       29     | 5      3      8      | 269    4      7     
 3       2689    4      | 267    27     1      | 2569   2568   2569   
 68      5       7      | 26     4      9      | 3      268    1     

Chain = (2=7)r6c4 - r4c5 = r4c8 - (7=25)r5c89 => -2 r5c5, r6c7; lclste

Phil
pjb
2014 Supporter
 
Posts: 2025
Joined: 11 September 2011
Location: Sydney, Australia


Return to Puzzles