- Code: Select all
*-----------*
|.15|6..|...|
|...|.35|..2|
|.6.|...|758|
|---+---+---|
|.2.|4..|...|
|..7|...|9..|
|...|..3|.8.|
|---+---+---|
|278|...|.1.|
|4..|56.|...|
|...|..1|84.|
*-----------*
Play/Print this puzzle online
*-----------*
|.15|6..|...|
|...|.35|..2|
|.6.|...|758|
|---+---+---|
|.2.|4..|...|
|..7|...|9..|
|...|..3|.8.|
|---+---+---|
|278|...|.1.|
|4..|56.|...|
|...|..1|84.|
*-----------*
g78 1 5 | 6 278 a27 | 34 39 349
789 f489 49 | 78 3 5 | 1 6 2
3 6 2 | 19 149 49 | 7 5 8
------------------------+----------------------+---------------------
15689 2 d369 | 4 15789 b67 | 356 c37 13567
1568 e3458 7 | 128 1258 26 | 9 23 13456
1569 459 469 | 1279 12579 3 | 2456 8 14567
------------------------+----------------------+---------------------
2 7 8 | 3 49 49 | 56 1 56
4 39 1 | 5 6 8 | 23 2379 379
569 359 369 | 27 27 1 | 8 4 39
*--------------------------------------------------------------*
| 78 1 5 | 6 278 27 | 34 a39 b349 |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
|--------------------+--------------------+--------------------|
| 15689 2 369 | 4 15789 67 | 356 7-3 13567 |
|c1568 3458 7 |c128 c1258 c26 | 9 ca23 c13456 |
| 1569 459 469 | 1279 12579 3 | 2456 8 14567 |
|--------------------+--------------------+--------------------|
| 2 7 8 | 3 49 49 | 56 1 56 |
| 4 39 1 | 5 6 8 | 23 a2379 b379 |
| 569 359 369 | 27 27 1 | 8 4 b39 |
*--------------------------------------------------------------*
*--------------------------------------------------------------------*
| 78 1 5 | 6 278 27 | 34 39 349 |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
*----------------------+----------------------+----------------------|
| 15689 2 369 | 4 15789 b67 |c356 b37 13567 |
|a1568 3458 7 |a128 a1258 a26 | 9 3-2 b13456 |
| 1569 459 469 | 1279 12579 3 |c2456 8 14567 |
*----------------------+----------------------+----------------------|
| 2 7 8 | 3 49 49 |c56 1 56 |
| 4 39 1 | 5 6 8 | 23 2379 379 |
| 569 359 369 | 27 27 1 | 8 4 39 |
*--------------------------------------------------------------------*
.--------------------.-----------------.-----------------------.
| 78 1 5 | 6 278 27 | 34 39 e349 |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
:--------------------+-----------------+-----------------------:
| 15689 2 b369 | 4 15789 67 | 356 a37 1356-7 |
| 1568 c3458 7 | 128 1258 26 | 9 23 d13456 |
| 1569 459 469 | 1279 12579 3 | 2456 8 1456-7 |
:--------------------+-----------------+-----------------------:
| 2 7 8 | 3 49 49 | 56 1 56 |
| 4 39 1 | 5 6 8 | 23 239-7 e379 |
| 569 359 369 | 27 27 1 | 8 4 e39 |
'--------------------'-----------------'-----------------------'
SteveG48 wrote:
- Code: Select all
*--------------------------------------------------------------------*
| 78 1 5 | 6 278 27 | 34 39 349 |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
*----------------------+----------------------+----------------------|
| 15689 2 369 | 4 15789 b67 |c356 b37 13567 |
|a1568 3458 7 |a128 a1258 a26 | 9 3-2 b13456 |
| 1569 459 469 | 1279 12579 3 |c2456 8 14567 |
*----------------------+----------------------+----------------------|
| 2 7 8 | 3 49 49 |c56 1 56 |
| 4 39 1 | 5 6 8 | 23 2379 379 |
| 569 359 369 | 27 27 1 | 8 4 39 |
*--------------------------------------------------------------------*
I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.
(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte
DonM wrote:SteveG48 wrote:
- Code: Select all
*--------------------------------------------------------------------*
| 78 1 5 | 6 278 27 | 34 39 349 |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
*----------------------+----------------------+----------------------|
| 15689 2 369 | 4 15789 b67 |c356 b37 13567 |
|a1568 3458 7 |a128 a1258 a26 | 9 3-2 b13456 |
| 1569 459 469 | 1279 12579 3 |c2456 8 14567 |
*----------------------+----------------------+----------------------|
| 2 7 8 | 3 49 49 |c56 1 56 |
| 4 39 1 | 5 6 8 | 23 2379 379 |
| 569 359 369 | 27 27 1 | 8 4 39 |
*--------------------------------------------------------------------*
I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.
(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte
Steve, unless I am missing something (which is always possible), this doesn't work because the 6 (of the first set) in r5c1 does not 'see' the 6 (of the middle set) in r4c6. That would leave 6,7 in r4c6, 3,7 in r4c8 and 3,4 in r5c9.
BTW, I like the way you have been plumbing the depths of all things ALS in your latest solutions. (Some of them have been very clever- one recently used an overlapping cell, something that is not easy to find.) I did the same thing several years ago preceding my Advanced ALS Chains thread that Luke referenced above.
SteveG48 wrote:DonM wrote:SteveG48 wrote:
- Code: Select all
*--------------------------------------------------------------------*
| 78 1 5 | 6 278 27 | 34 39 349 |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
*----------------------+----------------------+----------------------|
| 15689 2 369 | 4 15789 b67 |c356 b37 13567 |
|a1568 3458 7 |a128 a1258 a26 | 9 3-2 b13456 |
| 1569 459 469 | 1279 12579 3 |c2456 8 14567 |
*----------------------+----------------------+----------------------|
| 2 7 8 | 3 49 49 |c56 1 56 |
| 4 39 1 | 5 6 8 | 23 2379 379 |
| 569 359 369 | 27 27 1 | 8 4 39 |
*--------------------------------------------------------------------*
I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.
(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte
Steve, unless I am missing something (which is always possible), this doesn't work because the 6 (of the first set) in r5c1 does not 'see' the 6 (of the middle set) in r4c6. That would leave 6,7 in r4c6, 3,7 in r4c8 and 3,4 in r5c9.
BTW, I like the way you have been plumbing the depths of all things ALS in your latest solutions. (Some of them have been very clever- one recently used an overlapping cell, something that is not easy to find.) I did the same thing several years ago preceding my Advanced ALS Chains thread that Luke referenced above.
Thanks, Don. I've enjoyed the discussions that you, DAJ, DPB, and others have had on various ALS solutions. With regard to your concern on this one, with 2's eliminated from the first set, the 6 has to be in r5c6, not r5c1, so it sees both r4c6 and r5c9.
+-------------------+---------------------+----------------------+
| 78 1 5 | 6 278 27 | 34 39 (349) |
| 789 489 49 | 78 3 5 | 1 6 2 |
| 3 6 2 | 19 149 49 | 7 5 8 |
+-------------------+---------------------+----------------------+
| 15689 2 369 | 4 15789 67 | 356 (37) 1356-7 |
| (1568) 3458 7 | (128) (1258) (26) | 9 (23) (13456) |
| 1569 459 469 | 1279 12579 3 | 2456 8 1456-7 |
+-------------------+---------------------+----------------------+
| 2 7 8 | 3 49 49 | 56 1 56 |
| 4 39 1 | 5 6 8 | 23 239-7 (379) |
| 569 359 369 | 27 27 1 | 8 4 (39) |
+-------------------+---------------------+----------------------+
SteveG48 wrote:I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.
(...)
blue wrote:P.S. Deja vu all over again: ... something related to the above, using strongly linked ALS's
3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte
blue wrote:3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte
eleven wrote:blue wrote:3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte
Short version
3479r1589c9 = 347r4c8,r5c28 => -7r8c8,-37r4c9,-7r6c9