September 23, 2015

Post puzzles for others to solve here.

September 23, 2015

Postby ArkieTech » Tue Sep 22, 2015 11:20 pm

Code: Select all
 *-----------*
 |.15|6..|...|
 |...|.35|..2|
 |.6.|...|758|
 |---+---+---|
 |.2.|4..|...|
 |..7|...|9..|
 |...|..3|.8.|
 |---+---+---|
 |278|...|.1.|
 |4..|56.|...|
 |...|..1|84.|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: September 23, 2015

Postby pjb » Wed Sep 23, 2015 12:02 am

Another continuous loop:
Code: Select all
g78      1       5      | 6      278   a27     | 34     39     349   
 789    f489     49     | 78     3      5      | 1      6      2     
 3       6       2      | 19     149    49     | 7      5      8     
------------------------+----------------------+---------------------
 15689   2      d369    | 4      15789 b67     | 356   c37     13567 
 1568   e3458    7      | 128    1258   26     | 9      23     13456 
 1569    459     469    | 1279   12579  3      | 2456   8      14567 
------------------------+----------------------+---------------------
 2       7       8      | 3      49     49     | 56     1      56     
 4       39      1      | 5      6      8      | 23     2379   379   
 569     359     369    | 27     27     1      | 8      4      39     

(7)r1c6 = r4c6 - (7=3)r4c8 - r4c3 = (3-8)r5c2 = r2c2 - (8=7)r1c1 - loop => -7 r4c59, -3 r4c79, -8 r2c1, -7 r1c5, -4 r5c2, -5 r5c2; stte

Phil
pjb
2014 Supporter
 
Posts: 2676
Joined: 11 September 2011
Location: Sydney, Australia

Re: September 23, 2015

Postby Leren » Wed Sep 23, 2015 12:14 am

Code: Select all
*--------------------------------------------------------------*
| 78    1     5      | 6     278   27     | 34   a39   b349    |
| 789   489   49     | 78    3     5      | 1     6     2      |
| 3     6     2      | 19    149   49     | 7     5     8      |
|--------------------+--------------------+--------------------|
| 15689 2     369    | 4     15789 67     | 356   7-3   13567  |
|c1568  3458  7      |c128  c1258 c26     | 9   ca23   c13456  |
| 1569  459   469    | 1279  12579 3      | 2456  8     14567  |
|--------------------+--------------------+--------------------|
| 2     7     8      | 3     49    49     | 56    1     56     |
| 4     39    1      | 5     6     8      | 23   a2379 b379    |
| 569   359   369    | 27    27    1      | 8     4    b39     |
*--------------------------------------------------------------*

ALS XY Wing: (3=7) r158c8 - (7=4) r189c9 - (4=3) r5c145689 => - 3 r4c8; stte

Leren
Leren
 
Posts: 5126
Joined: 03 June 2012

Re: September 23, 2015

Postby SteveG48 » Wed Sep 23, 2015 1:56 am

Code: Select all
 *--------------------------------------------------------------------*
 | 78     1      5      | 6      278    27     | 34     39     349    |
 | 789    489    49     | 78     3      5      | 1      6      2      |
 | 3      6      2      | 19     149    49     | 7      5      8      |
 *----------------------+----------------------+----------------------|
 | 15689  2      369    | 4      15789 b67     |c356   b37     13567  |
 |a1568   3458   7      |a128   a1258  a26     | 9      3-2   b13456  |
 | 1569   459    469    | 1279   12579  3      |c2456   8      14567  |
 *----------------------+----------------------+----------------------|
 | 2      7      8      | 3      49     49     |c56     1      56     |
 | 4      39     1      | 5      6      8      | 23     2379   379    |
 | 569    359    369    | 27     27     1      | 8      4      39     |
 *--------------------------------------------------------------------*


I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.

(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 23, 2015

Postby bat999 » Wed Sep 23, 2015 8:46 pm

Code: Select all
.--------------------.-----------------.-----------------------.
| 78      1      5   | 6     278    27 | 34     39     e349    |
| 789     489    49  | 78    3      5  | 1      6       2      |
| 3       6      2   | 19    149    49 | 7      5       8      |
:--------------------+-----------------+-----------------------:
| 15689   2     b369 | 4     15789  67 | 356   a37      1356-7 |
| 1568   c3458   7   | 128   1258   26 | 9      23     d13456  |
| 1569    459    469 | 1279  12579  3  | 2456   8       1456-7 |
:--------------------+-----------------+-----------------------:
| 2       7      8   | 3     49     49 | 56     1       56     |
| 4       39     1   | 5     6      8  | 23     239-7  e379    |
| 569     359    369 | 27    27     1  | 8      4      e39     |
'--------------------'-----------------'-----------------------'
(7=3)r4c8 - r4c3 = (3-4)r5c2 = r5c9 - (4=7)r189c9 => -7 r46c9,r8c8; stte
8-)
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: September 23, 2015

Postby DonM » Wed Sep 23, 2015 8:57 pm

SteveG48 wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 78     1      5      | 6      278    27     | 34     39     349    |
 | 789    489    49     | 78     3      5      | 1      6      2      |
 | 3      6      2      | 19     149    49     | 7      5      8      |
 *----------------------+----------------------+----------------------|
 | 15689  2      369    | 4      15789 b67     |c356   b37     13567  |
 |a1568   3458   7      |a128   a1258  a26     | 9      3-2   b13456  |
 | 1569   459    469    | 1279   12579  3      |c2456   8      14567  |
 *----------------------+----------------------+----------------------|
 | 2      7      8      | 3      49     49     |c56     1      56     |
 | 4      39     1      | 5      6      8      | 23     2379   379    |
 | 569    359    369    | 27     27     1      | 8      4      39     |
 *--------------------------------------------------------------------*


I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.

(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte


Steve, unless I am missing something (which is always possible), this doesn't work because the 6 (of the first set) in r5c1 does not 'see' the 6 (of the middle set) in r4c6. That would leave 6,7 in r4c6, 3,7 in r4c8 and 3,4 in r5c9.

BTW, I like the way you have been plumbing the depths of all things ALS in your latest solutions. (Some of them have been very clever- one recently used an overlapping cell, something that is not easy to find.) I did the same thing several years ago preceding my Advanced ALS Chains thread that Luke referenced above.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: September 23, 2015

Postby SteveG48 » Thu Sep 24, 2015 1:36 am

DonM wrote:
SteveG48 wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 78     1      5      | 6      278    27     | 34     39     349    |
 | 789    489    49     | 78     3      5      | 1      6      2      |
 | 3      6      2      | 19     149    49     | 7      5      8      |
 *----------------------+----------------------+----------------------|
 | 15689  2      369    | 4      15789 b67     |c356   b37     13567  |
 |a1568   3458   7      |a128   a1258  a26     | 9      3-2   b13456  |
 | 1569   459    469    | 1279   12579  3      |c2456   8      14567  |
 *----------------------+----------------------+----------------------|
 | 2      7      8      | 3      49     49     |c56     1      56     |
 | 4      39     1      | 5      6      8      | 23     2379   379    |
 | 569    359    369    | 27     27     1      | 8      4      39     |
 *--------------------------------------------------------------------*


I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.

(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte


Steve, unless I am missing something (which is always possible), this doesn't work because the 6 (of the first set) in r5c1 does not 'see' the 6 (of the middle set) in r4c6. That would leave 6,7 in r4c6, 3,7 in r4c8 and 3,4 in r5c9.

BTW, I like the way you have been plumbing the depths of all things ALS in your latest solutions. (Some of them have been very clever- one recently used an overlapping cell, something that is not easy to find.) I did the same thing several years ago preceding my Advanced ALS Chains thread that Luke referenced above.


Thanks, Don. I've enjoyed the discussions that you, DAJ, DPB, and others have had on various ALS solutions. With regard to your concern on this one, with 2's eliminated from the first set, the 6 has to be in r5c6, not r5c1, so it sees both r4c6 and r5c9.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4503
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 23, 2015

Postby DonM » Thu Sep 24, 2015 2:11 am

SteveG48 wrote:
DonM wrote:
SteveG48 wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 78     1      5      | 6      278    27     | 34     39     349    |
 | 789    489    49     | 78     3      5      | 1      6      2      |
 | 3      6      2      | 19     149    49     | 7      5      8      |
 *----------------------+----------------------+----------------------|
 | 15689  2      369    | 4      15789 b67     |c356   b37     13567  |
 |a1568   3458   7      |a128   a1258  a26     | 9      3-2   b13456  |
 | 1569   459    469    | 1279   12579  3      |c2456   8      14567  |
 *----------------------+----------------------+----------------------|
 | 2      7      8      | 3      49     49     |c56     1      56     |
 | 4      39     1      | 5      6      8      | 23     2379   379    |
 | 569    359    369    | 27     27     1      | 8      4      39     |
 *--------------------------------------------------------------------*


I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.

(2=1568)r5c1456) - (156=374)r4c68,r5c9 - (34=256)r468c7 => -2 r5c8 ; stte


Steve, unless I am missing something (which is always possible), this doesn't work because the 6 (of the first set) in r5c1 does not 'see' the 6 (of the middle set) in r4c6. That would leave 6,7 in r4c6, 3,7 in r4c8 and 3,4 in r5c9.

BTW, I like the way you have been plumbing the depths of all things ALS in your latest solutions. (Some of them have been very clever- one recently used an overlapping cell, something that is not easy to find.) I did the same thing several years ago preceding my Advanced ALS Chains thread that Luke referenced above.


Thanks, Don. I've enjoyed the discussions that you, DAJ, DPB, and others have had on various ALS solutions. With regard to your concern on this one, with 2's eliminated from the first set, the 6 has to be in r5c6, not r5c1, so it sees both r4c6 and r5c9.


And so it does. Very nice!
Don
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: September 23, 2015

Postby blue » Thu Sep 24, 2015 4:34 am

Code: Select all
+-------------------+---------------------+----------------------+
| 78      1     5   | 6      278     27   | 34    39     (349)   |
| 789     489   49  | 78     3       5    | 1     6      2       |
| 3       6     2   | 19     149     49   | 7     5      8       |
+-------------------+---------------------+----------------------+
| 15689   2     369 | 4      15789   67   | 356   (37)   1356-7  |
| (1568)  3458  7   | (128)  (1258)  (26) | 9     (23)   (13456) |
| 1569    459   469 | 1279   12579   3    | 2456  8      1456-7  |
+-------------------+---------------------+----------------------+
| 2       7     8   | 3      49      49   | 56    1      56      |
| 4       39    1   | 5      6       8    | 23    239-7  (379)   |
| 569     359   369 | 27     27      1    | 8     4      (39)    |
+-------------------+---------------------+----------------------+


SteveG48 wrote:I'm not sure what I think about this one, but I think it relates to the discussion DonM was having about Marty's solution the other day.

(...)

In a similar vein, except that I'm sure I don't like it ... :D

(7=4)r4c8,r5c145689 - (4=7)r189c9 => -7r8c8,-7r46c9; stte

--

P.S. Deja vu all over again: ... something related to the above, using strongly linked ALS's

3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte
blue
 
Posts: 1054
Joined: 11 March 2013

Re: September 23, 2015

Postby ronk » Thu Sep 24, 2015 3:48 pm

blue wrote:P.S. Deja vu all over again: ... something related to the above, using strongly linked ALS's

3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte

I definitely like this :!:
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: September 23, 2015

Postby eleven » Fri Sep 25, 2015 12:00 pm

blue wrote:3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte

Short version :)
3479r1589c9 = 347r4c8,r5c28 => -7r8c8,-37r4c9,-7r6c9
eleven
 
Posts: 3177
Joined: 10 February 2008

Re: September 23, 2015

Postby ronk » Fri Sep 25, 2015 8:30 pm

eleven wrote:
blue wrote:3479r1589c9 = 12568r5c14569 - (2=37)r45c8 => -7r8c8,-37r4c9,-7r6c9; stte

Short version :)
3479r1589c9 = 347r4c8,r5c28 => -7r8c8,-37r4c9,-7r6c9

It appears you are using als:3479r189c9, ahs:34r5c289 and als:37r4c8 for this AIC.

(379=4)r189c9 - (hp34)r5c29 = (3)r5c8* - (3=7)r4c8 ==> r8c8, r46c9 <> 7; r4c9* <> 3

With this as a start however, I cannot see how you are "compressing" it to a single strong link. An ALS/AHS mix does not compress as easily as an all ALS collection.

edit: changed to hidden-pair notation
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA


Return to Puzzles