September 21, 2019

Post puzzles for others to solve here.

September 21, 2019

Postby ArkieTech » Sat Sep 21, 2019 10:56 am

[code] *-----------*
|..7|6..|3..|
|.3.|..4|6..|
|4..|.3.|..8|
|---+---+---|
|5..|.4.|..7|
|..2|7..|1..|
|.7.|..3|...|
|---+---+---|
|25.|.1.|9..|
|...|...|.16|
|..9|4..|.5.|
*-----------*
[code]

Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: September 21, 2019

Postby SCLT » Sat Sep 21, 2019 11:26 am

Code: Select all
+---------------------+-----------------------+------------------------+
|  189    1289  7     |  6      2589   12589  |   3      249    12459  |
|  189    3     158   |  12589  25789  4      |   6      279    1259   |
|  4      1269  156   |  1259   3      12579  |   57-2    279    8     |
+---------------------+-----------------------+------------------------+
|  5      1689  1368  |  1289   4      12689  |   28     23689  7      |
|  3689   4689  2     |  7      5689   5689   |   1      34689  3459   |
|  1689   7     1468  |  12589  25689  3      |   458-2  24689  2459   |
+---------------------+-----------------------+------------------------+
|  2      5     3468  |  38     1      678    |   9      3478   34     |
| d378    48   d348   |  23589  25789  25789  | ad2478   1      6      |
| c13678  168   9     |  4      2678   2678   |  a278    5     b3-2    |
+---------------------+-----------------------+------------------------+


2r89c7 = (2-3)r9c9 = r9c1 - (3=4782)r8c1237 => -2 r36c7,r9c9 ; stte

I'll be surprised if there's anything _very_ different which still achieves stte
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: September 21, 2019

Postby SteveG48 » Sat Sep 21, 2019 2:07 pm

SCLT wrote:
2r89c7 = (2-3)r9c9 = r9c1 - (3=4782)r8c1237 => -2 r36c7,r9c9 ; stte

I'll be surprised if there's anything _very_ different which still achieves stte


Probably so. You can drop the first term in the chain and take just the -2 r9c9 if you want it slightly shorter.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4481
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 21, 2019

Postby SCLT » Sat Sep 21, 2019 2:25 pm

SteveG48 wrote:You can drop the first term in the chain and take just the -2 r9c9 if you want it slightly shorter.


Indeed - but not stte
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: September 21, 2019

Postby Sudtyro2 » Sat Sep 21, 2019 2:51 pm

SCLT wrote:
2r89c7 = (2-3)r9c9 = r9c1 - (3=4782)r8c1237 => -2 r36c7,r9c9 ; stte

And now I'm confused (nothing new about that), but isn't 2r4c7 also eliminated by the AIC?
The A/S Solver shows a stte solution solely from that one elimination.
Yet, -2 r36c7,r9c9 in the solver isn't stte. A glitch somewhere? :?

SteveC
Sudtyro2
 
Posts: 754
Joined: 15 April 2013

Re: September 21, 2019

Postby SCLT » Sat Sep 21, 2019 3:07 pm

Sudtyro2 wrote:And now I'm confused (nothing new about that), but isn't 2r4c7 also eliminated by the AIC?


Err, yes, and in fact that was my target elimination all along, with the others just along for the ride. And yet I forgot to write it down!

Simple carelessness, nothing to be confused by :D
SCLT
 
Posts: 171
Joined: 06 August 2013

Re: September 21, 2019

Postby SpAce » Sat Sep 21, 2019 6:29 pm

Code: Select all
.-------------------.--------------------------.------------------------.
| 189    1289  7    |  6       2589     12589  |   3      249     12459 |
| 189    3     158  |  12589   25789    4      |   6      279     1259  |
| 4      1269  156  |  1259    3        12579  |   257    279     8     |
:-------------------+--------------------------+------------------------:
| 5      1689  1368 |  1289    4        12689  |  c28     23689   7     |
| 3689   4689  2    |  7       5689     5689   |   1      34689   3459  |
| 1689   7     1468 |  12589   25689    3      |   2458   24689   2459  |
:-------------------+--------------------------+------------------------:
| 2      5     3468 |  3-8     1      f(678)   |   9     a347[8]  34    |
| 378    48    348  | e23589  e25789   e25789  | bd2478   1       6     |
| 13678  168   9    |  4      f2(678)  f2(678) |  b278    5       23    |
'-------------------'--------------------------'------------------------'

(8)r7c8 = r89c7 - (8=2)r4c7 - r8c7 = r8c456 - (2=678)b8p389 => -8 r7c4; stte
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: September 21, 2019

Postby Cenoman » Sat Sep 21, 2019 7:48 pm

For a short one-stepper : (3=4782)r8c1237 - (2=3)r9c9 => -3 r9c1; lclste
For a slightly different ste finish:
Code: Select all
 +------------------------+--------------------------+-------------------------+
 |  189     1289   7      |  6       2589    12589   |  3      249     12459   |
 |  189     3      158    |  12589   25789   4       |  6      279     1259    |
 |  4       1269   156    |  1259    3       12579   |  257    279     8       |
 +------------------------+--------------------------+-------------------------+
 |  5       1689   1368   |  1289    4       12689   | d28    c23689   7       |
 |  3689    4689   2      |  7       5689    5689    |  1     c34689   3459    |
 |  1689    7      1468   |  12589   25689   3       |  2458  c24689   2459    |
 +------------------------+--------------------------+-------------------------+
 |  2       5      3468   | a38      1       678     |  9     b3478    34      |
 |  378     48     348    | f2589-3 f25789  f25789   | e2478   1       6       |
 |  13678   168    9      |  4       2678    2678    |  278    5       23      |
 +------------------------+--------------------------+-------------------------+

(3=8)r7c4 - r7c8 = r456c8 - (8=2)r4c7 - r8c7 = (259)r8c456 => -3 r8c4; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France


Return to Puzzles