- Code: Select all
*-----------*
|1.7|...|.3.|
|.5.|4..|..6|
|4..|...|5..|
|---+---+---|
|.46|1.3|..5|
|..5|2.9|7..|
|9..|5.6|24.|
|---+---+---|
|..8|...|..7|
|7..|..2|.1.|
|.2.|...|8.4|
*-----------*
Play/Print this puzzle online
*-----------*
|1.7|...|.3.|
|.5.|4..|..6|
|4..|...|5..|
|---+---+---|
|.46|1.3|..5|
|..5|2.9|7..|
|9..|5.6|24.|
|---+---+---|
|..8|...|..7|
|7..|..2|.1.|
|.2.|...|8.4|
*-----------*
*--------------------------------------------------------------------*
| 1 e689 7 | 69 269 5 | 4 3 28 |
|b3-8 5 239 | 4 239 c78 | 1 79 6 |
| 4 d689 d239 |d37 12369 c178 | 5 79 d28 |
*----------------------+----------------------+----------------------|
| 2 4 6 | 1 7 3 | 9 8 5 |
|a38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
*----------------------+----------------------+----------------------|
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 c17 | 8 5 4 |
*--------------------------------------------------------------------*
*-----------------------------------------------------------------------*
| 1 a689 7 |a69 a269 5 | 4 3 28 |
| 3-8 5 239 | 4 S239 b78c | 1 79c 6 |
| 4 689 239 |b37 12369 178 | 5 79 28 |
|-----------------------+-----------------------+-----------------------|
| 2 4 6 | 1 7 3 | 9 8 5 |
| 38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
|-----------------------+-----------------------+-----------------------|
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 17 | 8 5 4 |
*-----------------------------------------------------------------------*
3 Petal Death Blossom: Stem Cell r2c5 {239};
8 r2c1 - (8=2) r1c245 - (2) r2c5;
8 r2c1 - (8=3) r2c6, r3c4 - (3) r2c5;
8 r2c1 - (8=9) r2c68 - (9) r2c5; => - 8 r2c1; stte
+--------------+--------------------+---------------+
| 1 689 7 | 69 69(2) 5 | 4 3 (28) |
| 38 5 239 | 4 (239) -7(8) | 1 (79) 6 |
| 4 689 239 | (37) 12369 17(8) | 5 79 2(8) |
+--------------+--------------------+---------------+
| 2 4 6 | 1 7 3 | 9 8 5 |
| 38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
+--------------+--------------------+---------------+
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 17 | 8 5 4 |
+--------------+--------------------+---------------+
[XYWing(379)r2c58.r3c4=2r2c5-2r1c5=(2-8)r1c9=8r3c9-8r3c6=8r2c6]-(7=8)r2c6; stte
+------------+--------------+---------+
| 1 689 7 | 69 269 5 | 4 3 28 |
| 38 5 239 | 4 239 78 | 1 79 6 |
| 4 689 239 | 37 12369 178 | 5 79 28 |
+------------+--------------+---------+
| 2 4 6 | 1 7 3 | 9 8 5 |
| 38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
+------------+--------------+---------+
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 17 | 8 5 4 |
+------------+--------------+---------+
The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?
1 689 7 | 69 269 5 | 4 3 28
38 5 239 | 4 239 aA78 | 1 79 6
4 689 c239 |b37 12369 17-8 | 5 79 d28
------------------------+----------------------+---------------------
2 4 6 | 1 7 3 | 9 8 5
38 18 5 | 2 4 9 | 7 6 13
9 7 13 | 5 8 6 | 2 4 13
------------------------+----------------------+---------------------
5 19 8 | 69 169 4 | 3 2 7
7 3 4 | 8 5 2 | 6 1 9
6 2 C19 | 37 139 B17 | 8 5 4
(8=7)r2c6 - (7=3)r3c4 - (39=2)r3c3 - (2=8)r3c9 => -8 r3c6; stte
\ /
(7=1)r9c6 - (1=9)r9c3
8r5c1 = r2c1 - (8=7)r2c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
\\ /
(8)r3c6
or 8r5c1 = r2c1 - (8=7)r2c6* - (7=18)r39c6 - (78=2369)r3c2349* - (69=8)r1c2 => -8 r2c1 ; stte
pjb wrote:Steve
I share your bother. The third term is the naked triple 178, and r3c6 reduces to 8 alone if r2c6 <> 8.
Phil
Marty R. wrote:The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?
Steve, when I knew even less about ALS's than I do now (if that's possible), I learned (probably from Don M.) that the lead-in to an ALS (8 in this case) has to see all instances of that number in the ALS.
SteveG48 wrote:The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
]+-------------------+--------------------+-------------+
| 1 (689) 7 | 69 269 5 | 4 3 28 |
| 3-8 5 239 | 4 239 (78) | 1 79 6 |
| 4 (689) (239) | (37) 12369 (178) | 5 79 (28) |
+-------------------+--------------------+-------------+
| 2 4 6 | 1 7 3 | 9 8 5 |
| 38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
+-------------------+--------------------+-------------+
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 (17) | 8 5 4 |
+-------------------+--------------------+-------------+
SteveG48 wrote:
- Code: Select all
*--------------------------------------------------------------------*
| 1 e689 7 | 69 269 5 | 4 3 28 |
|b3-8 5 239 | 4 239 c78 | 1 79 6 |
| 4 d689 d239 |d37 12369 c178 | 5 79 d28 |
*----------------------+----------------------+----------------------|
| 2 4 6 | 1 7 3 | 9 8 5 |
|a38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
*----------------------+----------------------+----------------------|
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 c17 | 8 5 4 |
*--------------------------------------------------------------------*
The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
SteveG48 wrote:Exactly, and r2c6 and r2c9 reduce to 7 and 1 respectively. The logic is that we have a locked set (not an ALS) before and after eliminating the 8 at r2c6, but we now know the exact location of each candidate. What is a better way to write the logic??
DonM wrote:Steve, it's too late at night for me to look into the chain, but for the moment,isn't there a typo?
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
Should be:
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r5c2 ; stte
DonM wrote:SteveG48 wrote:
- Code: Select all
*--------------------------------------------------------------------*
| 1 e689 7 | 69 269 5 | 4 3 28 |
|b3-8 5 239 | 4 239 c78 | 1 79 6 |
| 4 d689 d239 |d37 12369 c178 | 5 79 d28 |
*----------------------+----------------------+----------------------|
| 2 4 6 | 1 7 3 | 9 8 5 |
|a38 18 5 | 2 4 9 | 7 6 13 |
| 9 7 13 | 5 8 6 | 2 4 13 |
*----------------------+----------------------+----------------------|
| 5 19 8 | 69 169 4 | 3 2 7 |
| 7 3 4 | 8 5 2 | 6 1 9 |
| 6 2 19 | 37 139 c17 | 8 5 4 |
*--------------------------------------------------------------------*
The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stteSteveG48 wrote:Exactly, and r2c6 and r2c9 reduce to 7 and 1 respectively. The logic is that we have a locked set (not an ALS) before and after eliminating the 8 at r2c6, but we now know the exact location of each candidate. What is a better way to write the logic??
What's troubling me about the notation is that since r2c6 and (I think you meant) r9c6 would reduce to 7 and 1 respectively and, thus, 8 would be in r3c6, how can one use (78=2369)r3c2349 which implies that (78) is locked in r3c6? Not to mention that there is a simple (8)r2c6=r3c6-r3c9=r1c9-(8)r1c2 which conflicts with the logic from using the ALS above. I guess I question the validity of the ALS to begin with. But I could be missing something.