September 2, 2015

Post puzzles for others to solve here.

September 2, 2015

Postby ArkieTech » Tue Sep 01, 2015 11:27 pm

Code: Select all
 *-----------*
 |1.7|...|.3.|
 |.5.|4..|..6|
 |4..|...|5..|
 |---+---+---|
 |.46|1.3|..5|
 |..5|2.9|7..|
 |9..|5.6|24.|
 |---+---+---|
 |..8|...|..7|
 |7..|..2|.1.|
 |.2.|...|8.4|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: September 2, 2015

Postby SteveG48 » Tue Sep 01, 2015 11:57 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 1     e689    7      | 69     269    5      | 4      3      28     |
 |b3-8    5      239    | 4      239   c78     | 1      79     6      |
 | 4     d689   d239    |d37     12369 c178    | 5      79    d28     |
 *----------------------+----------------------+----------------------|
 | 2      4      6      | 1      7      3      | 9      8      5      |
 |a38     18     5      | 2      4      9      | 7      6      13     |
 | 9      7      13     | 5      8      6      | 2      4      13     |
 *----------------------+----------------------+----------------------|
 | 5      19     8      | 69     169    4      | 3      2      7      |
 | 7      3      4      | 8      5      2      | 6      1      9      |
 | 6      2      19     | 37     139   c17     | 8      5      4      |
 *--------------------------------------------------------------------*


The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?

8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 2, 2015

Postby Leren » Wed Sep 02, 2015 12:14 am

Code: Select all
*-----------------------------------------------------------------------*
| 1     a689    7       |a69    a269    5       | 4      3      28      |
| 3-8    5      239     | 4     S239   b78c     | 1      79c    6       |
| 4      689    239     |b37     12369  178     | 5      79     28      |
|-----------------------+-----------------------+-----------------------|
| 2      4      6       | 1      7      3       | 9      8      5       |
| 38     18     5       | 2      4      9       | 7      6      13      |
| 9      7      13      | 5      8      6       | 2      4      13      |
|-----------------------+-----------------------+-----------------------|
| 5      19     8       | 69     169    4       | 3      2      7       |
| 7      3      4       | 8      5      2       | 6      1      9       |
| 6      2      19      | 37     139    17      | 8      5      4       |
*-----------------------------------------------------------------------*

3 Petal Death Blossom: Stem Cell r2c5 {239}; 

8 r2c1 - (8=2) r1c245     - (2) r2c5;

8 r2c1 - (8=3) r2c6, r3c4 - (3) r2c5;

8 r2c1 - (8=9) r2c68      - (9) r2c5; => - 8 r2c1; stte

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: September 2, 2015

Postby JC Van Hay » Wed Sep 02, 2015 1:12 am

Code: Select all
+--------------+--------------------+---------------+
| 1   689  7   | 69    69(2)  5     | 4  3     (28) |
| 38  5    239 | 4     (239)  -7(8) | 1  (79)  6    |
| 4   689  239 | (37)  12369  17(8) | 5  79    2(8) |
+--------------+--------------------+---------------+
| 2   4    6   | 1     7      3     | 9  8     5    |
| 38  18   5   | 2     4      9     | 7  6     13   |
| 9   7    13  | 5     8      6     | 2  4     13   |
+--------------+--------------------+---------------+
| 5   19   8   | 69    169    4     | 3  2     7    |
| 7   3    4   | 8     5      2     | 6  1     9    |
| 6   2    19  | 37    139    17    | 8  5     4    |
+--------------+--------------------+---------------+
[XYWing(379)r2c58.r3c4=2r2c5-2r1c5=(2-8)r1c9=8r3c9-8r3c6=8r2c6]-(7=8)r2c6; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: September 2, 2015

Postby Marty R. » Wed Sep 02, 2015 1:28 am

Code: Select all
+------------+--------------+---------+
| 1  689 7   | 69 269   5   | 4 3  28 |
| 38 5   239 | 4  239   78  | 1 79 6  |
| 4  689 239 | 37 12369 178 | 5 79 28 |
+------------+--------------+---------+
| 2  4   6   | 1  7     3   | 9 8  5  |
| 38 18  5   | 2  4     9   | 7 6  13 |
| 9  7   13  | 5  8     6   | 2 4  13 |
+------------+--------------+---------+
| 5  19  8   | 69 169   4   | 3 2  7  |
| 7  3   4   | 8  5     2   | 6 1  9  |
| 6  2   19  | 37 139   17  | 8 5  4  |
+------------+--------------+---------+

Play this puzzle online at the Daily Sudoku site

Simple Coloring

8r3c2-r3c9=r1c9-8r1c2=> -8 r5c2
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: September 2, 2015

Postby Marty R. » Wed Sep 02, 2015 1:34 am

The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?


Steve, when I knew even less about ALS's than I do now (if that's possible), I learned (probably from Don M.) that the lead-in to an ALS (8 in this case) has to see all instances of that number in the ALS.
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: September 2, 2015

Postby pjb » Wed Sep 02, 2015 2:01 am

Code: Select all
 1       689     7      | 69     269    5      | 4      3      28     
 38      5       239    | 4      239  aA78     | 1      79     6     
 4       689    c239    |b37     12369  17-8   | 5      79    d28     
------------------------+----------------------+---------------------
 2       4       6      | 1      7      3      | 9      8      5     
 38      18      5      | 2      4      9      | 7      6      13     
 9       7       13     | 5      8      6      | 2      4      13     
------------------------+----------------------+---------------------
 5       19      8      | 69     169    4      | 3      2      7     
 7       3       4      | 8      5      2      | 6      1      9     
 6       2      C19     | 37     139   B17     | 8      5      4     

(8=7)r2c6 - (7=3)r3c4 - (39=2)r3c3 - (2=8)r3c9 => -8 r3c6; stte
       \                      /
        (7=1)r9c6 - (1=9)r9c3


Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: September 2, 2015

Postby pjb » Wed Sep 02, 2015 2:17 am

Steve
I share your bother. The third term is the naked triple 178, and r3c6 reduces to 8 alone if r2c6 <> 8.


how about
Code: Select all
8r5c1 = r2c1 - (8=7)r2c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
                     \\     /
                     (8)r3c6

or 8r5c1 = r2c1 - (8=7)r2c6* - (7=18)r39c6 - (78=2369)r3c2349* - (69=8)r1c2 => -8 r2c1 ; stte

Phil
Last edited by pjb on Wed Sep 02, 2015 7:41 am, edited 2 times in total.
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: September 2, 2015

Postby SteveG48 » Wed Sep 02, 2015 3:11 am

pjb wrote:Steve
I share your bother. The third term is the naked triple 178, and r3c6 reduces to 8 alone if r2c6 <> 8.
Phil


Exactly, and r2c6 and r2c9 reduce to 7 and 1 respectively. The logic is that we have a locked set (not an ALS) before and after eliminating the 8 at r2c6, but we now know the exact location of each candidate. What is a better way to write the logic??
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 2, 2015

Postby SteveG48 » Wed Sep 02, 2015 3:13 am

Marty R. wrote:
The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?


Steve, when I knew even less about ALS's than I do now (if that's possible), I learned (probably from Don M.) that the lead-in to an ALS (8 in this case) has to see all instances of that number in the ALS.


Usually, yes. But I don't have an ALS here. The set is already locked and I'm wanting to establish that the 7 and 8 are both in box 2. How to properly write it is the problem.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 2, 2015

Postby DonM » Wed Sep 02, 2015 5:18 am

Steve, it's too late at night for me to look into the chain, but for the moment,isn't there a typo?

8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte

Should be:
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r5c2 ; stte
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: September 2, 2015

Postby JC Van Hay » Wed Sep 02, 2015 9:34 am

SteveG48 wrote:The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?

8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte
Code: Select all
]+-------------------+--------------------+-------------+
| 1    (689)  7     | 69    269    5     | 4  3   28   |
| 3-8  5      239   | 4     239    (78)  | 1  79  6    |
| 4    (689)  (239) | (37)  12369  (178) | 5  79  (28) |
+-------------------+--------------------+-------------+
| 2    4      6     | 1     7      3     | 9  8   5    |
| 38   18     5     | 2     4      9     | 7  6   13   |
| 9    7      13    | 5     8      6     | 2  4   13   |
+-------------------+--------------------+-------------+
| 5    19     8     | 69    169    4     | 3  2   7    |
| 7    3      4     | 8     5      2     | 6  1   9    |
| 6    2      19    | 37    139    (17)  | 8  5   4    |
+-------------------+--------------------+-------------+
(68=9)r13c2 - 9r3c3=*XY-Chain[(8=7)r2c6-(7=*238)r3c349] - (8=17)r39c6 - (7=8)r2c6 :=> -8r2c1; stte
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: September 2, 2015

Postby DonM » Wed Sep 02, 2015 5:58 pm

SteveG48 wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 1     e689    7      | 69     269    5      | 4      3      28     |
 |b3-8    5      239    | 4      239   c78     | 1      79     6      |
 | 4     d689   d239    |d37     12369 c178    | 5      79    d28     |
 *----------------------+----------------------+----------------------|
 | 2      4      6      | 1      7      3      | 9      8      5      |
 |a38     18     5      | 2      4      9      | 7      6      13     |
 | 9      7      13     | 5      8      6      | 2      4      13     |
 *----------------------+----------------------+----------------------|
 | 5      19     8      | 69     169    4      | 3      2      7      |
 | 7      3      4      | 8      5      2      | 6      1      9      |
 | 6      2      19     | 37     139   c17     | 8      5      4      |
 *--------------------------------------------------------------------*


The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?

8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte


SteveG48 wrote:Exactly, and r2c6 and r2c9 reduce to 7 and 1 respectively. The logic is that we have a locked set (not an ALS) before and after eliminating the 8 at r2c6, but we now know the exact location of each candidate. What is a better way to write the logic??


What's troubling me about the notation is that since r2c6 and (I think you meant) r9c6 would reduce to 7 and 1 respectively and, thus, 8 would be in r3c6, how can one use (78=2369)r3c2349 which implies that (78) is locked in r3c6? Not to mention that there is a simple (8)r2c6=r3c6-r3c9=r1c9-(8)r1c2 which conflicts with the logic from using the ALS above. I guess I question the validity of the ALS to begin with. But I could be missing something.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: September 2, 2015

Postby SteveG48 » Wed Sep 02, 2015 8:00 pm

DonM wrote:Steve, it's too late at night for me to look into the chain, but for the moment,isn't there a typo?

8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte

Should be:
8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r5c2 ; stte


Thanks, Don. Actually, it should be both. I missed one deletion.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 2, 2015

Postby SteveG48 » Wed Sep 02, 2015 8:16 pm

DonM wrote:
SteveG48 wrote:
Code: Select all
 *--------------------------------------------------------------------*
 | 1     e689    7      | 69     269    5      | 4      3      28     |
 |b3-8    5      239    | 4      239   c78     | 1      79     6      |
 | 4     d689   d239    |d37     12369 c178    | 5      79    d28     |
 *----------------------+----------------------+----------------------|
 | 2      4      6      | 1      7      3      | 9      8      5      |
 |a38     18     5      | 2      4      9      | 7      6      13     |
 | 9      7      13     | 5      8      6      | 2      4      13     |
 *----------------------+----------------------+----------------------|
 | 5      19     8      | 69     169    4      | 3      2      7      |
 | 7      3      4      | 8      5      2      | 6      1      9      |
 | 6      2      19     | 37     139   c17     | 8      5      4      |
 *--------------------------------------------------------------------*


The logic of this one is simple, but I'm bothered by the notation with 8 on both sides of the = sign in term 3. Comments?

8r5c1 = r2c1 - (8=178)r239c6 - (78=2369)r3c2349 - (69=8)r1c2 => -8 r2c1 ; stte


SteveG48 wrote:Exactly, and r2c6 and r2c9 reduce to 7 and 1 respectively. The logic is that we have a locked set (not an ALS) before and after eliminating the 8 at r2c6, but we now know the exact location of each candidate. What is a better way to write the logic??


What's troubling me about the notation is that since r2c6 and (I think you meant) r9c6 would reduce to 7 and 1 respectively and, thus, 8 would be in r3c6, how can one use (78=2369)r3c2349 which implies that (78) is locked in r3c6? Not to mention that there is a simple (8)r2c6=r3c6-r3c9=r1c9-(8)r1c2 which conflicts with the logic from using the ALS above. I guess I question the validity of the ALS to begin with. But I could be missing something.


You're right, I meant r9c6, not r2c9.

For the rest, if r2c6 is a 7 and r3c6 is an 8, then we eliminate 7 everywhere in box 2 and 8 everywhere on row 3. That locks the set r3c2349 as 2369, with 69 in box 1. That gives the desired result.

Again, what troubles me is the use of the r239c6 set which is already locked, and which requires the 8 on both sides of the = sign in term 3. In retrospect, I would also have re-written the entire chain as:

8r5c1 = r2c1 - (8=178)r239c6 - (78=239)r3c349 - (9=68)r13c2

But that's another issue.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Next

Return to Puzzles