- Code: Select all
*----------------------------------------------*
| x58 3 7 | 59 A689 2 | B689 1 4 |
| 1 9 6 | 345 48 37 | 2 57 7-8 |
| 458 b48 2 | 1 a689 67 | 689 567 3 |
|--------------+--------------+----------------|
| 9 2 5 | 8 7 1 | 4 3 6 |
| 48 7 48 | 6 3 9 | 15 2 15 |
| 6 1 3 | 2 5 4 | 7 8 9 |
|--------------+--------------+----------------|
| 3 5 49 | 49 126 8 | C16 67 127 |
| 7 c48 1 | 34 246 36 | 568 9 258 |
| 2 6 d89 | 7 19 5 | 3 4 eC18 |
*----------------------------------------------*
Kraken col (8)c3 => - 8r2c9; stte
- Code: Select all
8r3c5 - r3c2 = r8c2 - r9c3 = r9c9 - 8r2c9; abcde
(8-6)r1c5 = r1c7 - (6=18)b9p19 - 8r2c9; ABC
8r2c5 - 8r2c9;
Or, the closely related...
Kraken row (8)r1 => - 8r2c9; stte
- Code: Select all
8r1c1 - r3c2 = r8c2 - r9c3 = r9c9 - 8r2c9; xbcde
(8-6)r1c5 = r1c7 - (6=18)b9p19 - 8r2c9; ABC
8r1c7 - 8r2c9;
Just added...
I think one can also solve the AUR(69)r13c57, using above chains for the internal 8s:
- Code: Select all
8r3c5 - r3c2 = r8c2 - r9c3 = r9c9 - 8r2c9; abcde
(8-6)r1c5 = r1c7 - (6=18)b9p19 - 8r2c9; ABC
8r13c7 - 8r2c9;
SteveC