September 15, 2015

Post puzzles for others to solve here.

September 15, 2015

Postby ArkieTech » Mon Sep 14, 2015 11:14 pm

Code: Select all
 *-----------*
 |6..|314|...|
 |93.|...|...|
 |5..|.8.|.3.|
 |---+---+---|
 |..5|..1|.7.|
 |.1.|7.6|.9.|
 |.9.|5..|2..|
 |---+---+---|
 |.7.|.5.|..1|
 |...|...|.63|
 |...|438|..9|
 *-----------*


Play/Print this puzzle online
dan
User avatar
ArkieTech
 
Posts: 3355
Joined: 29 May 2006
Location: NW Arkansas USA

Re: September 15, 2015

Postby SteveG48 » Mon Sep 14, 2015 11:35 pm

Code: Select all
 *--------------------------------------------------------------------*
 | 6     b28     278    | 3      1      4      | 9     b58     2578   |
 | 9      3      1478   | 2      6      5      | 148    48     478    |
 | 5     c24     124    | 9      8      7      | 146    3      246    |
 *----------------------+----------------------+----------------------|
 | 234   c246    5      | 8      9      1      | 346    7      46     |
 | 348    1      348    | 7      2      6      | 3458   9      458    |
 | 7      9      8-6    | 5      4      3      | 2      1      68     |
 *----------------------+----------------------+----------------------|
 | 2348   7      23489  | 6      5      29     | 48     248    1      |
 | 248    2458   2489   | 1      7      29     | 458    6      3      |
 | 1      25-6  a26     | 4      3      8      | 7     a25     9      |
 *--------------------------------------------------------------------*


(6=25)r9c38 - (5=28)r1c28 - (2=46)r34c2 => -6 r6c3,r9c2 ; stte

Typo fixed. Thanks, Bat.
Last edited by SteveG48 on Tue Sep 15, 2015 9:19 pm, edited 1 time in total.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4483
Joined: 08 November 2013
Location: Orlando, Florida

Re: September 15, 2015

Postby Leren » Mon Sep 14, 2015 11:52 pm

Code: Select all
*--------------------------------------------------------------*
| 6    a28    278    | 3     1     4      | 9    e5-8   2578   |
| 9     3     1478   | 2     6     5      | 148   48    478    |
| 5     24    124    | 9     8     7      | 146   3     246    |
|--------------------+--------------------+--------------------|
| 234   246   5      | 8     9     1      | 346   7     46     |
| 348   1     348    | 7     2     6      | 3458  9     458    |
| 7     9     68     | 5     4     3      | 2     1     68     |
|--------------------+--------------------+--------------------|
| 2348  7     23489  | 6     5     29     | 48    248   1      |
| 248  b2458  2489   | 1     7     29     |c458   6     3      |
| 1     256   26     | 4     3     8      | 7    d25    9      |
*--------------------------------------------------------------*

L2 wing : (8) r1c2 = (8-5) r8c2 = r8c7 - r9c8 = (5) r1c8 => - 8 r1c8; stte

Leren
Last edited by Leren on Tue Sep 15, 2015 8:39 pm, edited 1 time in total.
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: September 15, 2015

Postby pjb » Tue Sep 15, 2015 1:05 am

Code: Select all
 6      b28      278    | 3      1      4      | 9     a58     2578   
 9       3       1478   | 2      6      5      | 148    48     478   
 5       24      124    | 9      8      7      | 146    3      246   
------------------------+----------------------+---------------------
 234     246     5      | 8      9      1      | 346    7      46     
 348     1       348    | 7      2      6      | 3458   9      458   
 7       9       68     | 5      4      3      | 2      1      68     
------------------------+----------------------+---------------------
 2348    7       23489  | 6      5      29     | 48     248    1     
 248    c2458    2489   | 1      7      29     |d458    6      3     
 1       256     26     | 4      3      8      | 7      2-5    9     

(5=8)r1c8 - r1c2 = (8-5)r8c2 = r8c7 => -5 r9c8; stte
This is very similar to above solutions, so
(8=6)r6c3 - (6=8)r134c2 => -8 r12c3; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: September 15, 2015

Postby Marty R. » Tue Sep 15, 2015 1:15 am

Code: Select all
+-----------------+--------+---------------+
| 6    28   278   | 3 1 4  | 9    58  2578 |
| 9    3    1478  | 2 6 5  | 148  48  478  |
| 5    24   124   | 9 8 7  | 146  3   246  |
+-----------------+--------+---------------+
| 234  246  5     | 8 9 1  | 346  7   46   |
| 348  1    348   | 7 2 6  | 3458 9   458  |
| 7    9    68    | 5 4 3  | 2    1   68   |
+-----------------+--------+---------------+
| 2348 7    23489 | 6 5 29 | 48   248 1    |
| 248  2458 2489  | 1 7 29 | 458  6   3    |
| 1    256  26    | 4 3 8  | 7    25  9    |
+-----------------+--------+---------------+

Play this puzzle online at the Daily Sudoku site

(8=2)r1c2-(2=468)r34c2,r6c3=> -8r12c3

Something seems strange here. I can't see a flaw in my chain, which ends with r6c3=8. Looking at it another way, if r1c2<>8, then r12c3=8 and r6c3 cannot be=8. What's the explanation for this apparent contradiction?
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: September 15, 2015

Postby Leren » Tue Sep 15, 2015 7:38 am

Marty R wrote : What's the explanation for this apparent contradiction?

The "apparent contradiction" stems from the fact that the original premise (that r1c2 <> 8) turns out to be False ie r1c2 = 8 in the solution.

You could have written this as a discontinuous loop that starts and ends on a Strong link (8=2) r1c2 - (2=6) r34c2 - (6=8) r6c3 - r12c3 = (8) r1c2 => r1c2 = 8.

You could call this a contradiction chain because the conclusion "contradicts" the premise. ie if you assume X is 'False and prove that X is True by a chain, then X is True in the solution.

Here is a link to Andrew Stuart's site where he describes this situation under the heading Nice Loops Rule 2. http://www.sudokuwiki.org/Alternating_Inference_Chains

Also your notation was a bit confusing. It looks like there are 2 ALSs in the chain but in fact there are 3. (8=2) r1c2- (2=46) r34c2 - (6=8) r6c3=> - 8 r12c3 would be clearer.

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: September 15, 2015

Postby bat999 » Tue Sep 15, 2015 2:03 pm

Code: Select all
.---------------------.----------.------------------.
| 6     d28     278   | 3  1  4  | 9     c58   2578 |
| 9      3      1478  | 2  6  5  | 148    48   478  |
| 5      24     124   | 9  8  7  | 146    3    246  |
:---------------------+----------+------------------:
| 234    246    5     | 8  9  1  | 346    7    46   |
| 348    1      348   | 7  2  6  | 3458   9    458  |
| 7      9      68    | 5  4  3  | 2      1    68   |
:---------------------+----------+------------------:
| 2348   7      23489 | 6  5  29 | 48     248  1    |
| 248   e248-5  2489  | 1  7  29 | 458    6    3    |
| 1     a256    26    | 4  3  8  | 7     b25   9    |
'---------------------'----------'------------------'
(5)r9c2 = r9c8 - (5=8)r1c8 - r1c2 = (8)r8c2 => -5 r8c2; stte
8-)
8-)
bat999
2017 Supporter
 
Posts: 677
Joined: 15 September 2014
Location: UK

Re: September 15, 2015

Postby Marty R. » Tue Sep 15, 2015 7:39 pm

Leren

Thank you very much, I appreciate the help.
Also your notation was a bit confusing. It looks like there are 2 ALSs in the chain but in fact there are 3. (8=2) r1c2- (2=46) r34c2 - (6=8) r6c3=> - 8 r12c3 would be clearer.


OK, but I don't understand why you're treating 8=2 and 6=8 as ALS's, even though they are, technically speaking.

(2=468)r34c2,r6c3


I think you're saying this is not a valid ALS because it includes cells from two houses.



Thanks again,
Marty
Marty R.
 
Posts: 1508
Joined: 23 October 2012
Location: Rochester, New York, USA

Re: September 15, 2015

Postby Leren » Tue Sep 15, 2015 9:02 pm

Hi Marty,

Here are two links to definitions of ALSs that require their cells to be within a single house.

http://sudopedia.enjoysudoku.com/Almost_Locked_Set.html

http://hodoku.sourceforge.net/en/tech_als.php

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: September 15, 2015

Postby ronk » Fri Sep 18, 2015 7:40 pm

Leren wrote:
Marty R wrote : What's the explanation for this apparent contradiction?

The "apparent contradiction" stems from the fact that the original premise (that r1c2 <> 8) turns out to be False ie r1c2 = 8 in the solution.

You could have written this as a discontinuous loop that starts and ends on a Strong link (8=2) r1c2 - (2=6) r34c2 - (6=8) r6c3 - r12c3 = (8) r1c2 => r1c2 = 8.

You could call this a contradiction chain because the conclusion "contradicts" the premise. ie if you assume X is 'False and prove that X is True by a chain, then X is True in the solution.

Can you argue the case without knowing anything about ultimate values in the solution?
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: September 15, 2015

Postby Leren » Sat Sep 19, 2015 11:29 pm

ronk wrote : Can you argue the case without knowing anything about ultimate values in the solution?

Yes. The reason is that discontinuous AICs fall within a more general construction that I might call a Kraken candidate, which i might write as

Code: Select all
1. Assume X rAcB is True.  Apply some AIC1   => YrCcD has some status (True or False).

2. Assume X rAcB is False. Apply some AIC2   => YrCcD has some status (True or False).

If the status of Y is the same for 1 and 2 (either True or False) then it must have that status in the solution. This does not depend on any knowledge of what the status of X is in the solution, because 100% of its possible statuses have been considered.

In the case of discontinuous loops, X = Y, A = C and B = D.

For loops starting and ending on Weak links the Kraken candidate construction looks like

Code: Select all
1. Assume X rAcB is True. Apply some AIC1   => X rAcB is False (AIC1 is a "contradiction" chain).

2. Assume X rAcB is False                   => X rAcB is False (AIC2 is trivial, in fact it is a tautology).

For loops starting and ending on Strong links the Kraken candidate construction looks like

Code: Select all
1. Assume X rAcB is True.                    => X rAcB is True (AIC1 is trivial, in fact it is a tautology).

2. Assume X rAcB is False. Apply some AIC2   => X rAcB is True (AIC2 is a "contradiction" chain).

So I think it's valid to conclude that in the case of a "contradiction" chain, the status of X in the solution is the opposite of the assumed status at the start of the chain, but this conclusion is not based on knowledge of what the status of X really is in the solution, although the language one uses may appear to suggest that, because in practice, the trivial leg of the Kraken candidate construction is usually left out in the notation (but not in the underlying Kraken candidate logic).

Leren
Leren
 
Posts: 5119
Joined: 03 June 2012

Re: September 15, 2015

Postby DonM » Mon Sep 21, 2015 6:07 pm

Marty R. wrote:
Code: Select all
+-----------------+--------+---------------+
| 6    28   278   | 3 1 4  | 9    58  2578 |
| 9    3    1478  | 2 6 5  | 148  48  478  |
| 5  [2]4*  124   | 9 8 7  | 146  3   246  |
+-----------------+--------+---------------+
| 234[2]46* 5     | 8 9 1  | 346  7   46   |
| 348  1    348   | 7 2 6  | 3458 9   458  |
| 7    9    68*   | 5 4 3  | 2    1   68   |
+-----------------+--------+---------------+
| 2348 7    23489 | 6 5 29 | 48   248 1    |
| 248  2458 2489  | 1 7 29 | 458  6   3    |
| 1    256  26    | 4 3 8  | 7    25  9    |
+-----------------+--------+---------------+


(8=2)r1c2-(2=468)r34c2,r6c3=> -8r12c3


Okay, having gone through a discussion of this same issue several years ago, I'll bite. Regardless of past definitions of an ALS (same house etc.) and regardless of the (IMO) somewhat obscure reasons given in above posts why Marty's solution is flawed: In what way does 468 in r34c2, r6c3 not operate exactly the same as a locked set? The 4, 6, and 8 can't go anywhere else. To me, this is the only subject at hand.

If purists can't bring themselves to call this construct an ALS, then they can give it another name, but IMO, unless it can be proved that the above does not operate as a locked set, then Marty's solution, as expressed, is valid.

Fwiw: I have always had the highest respect for Andrew Stuart, but unfortunately he has caused unnecessary confusion by using the term 'Nice Loops Rules' while using AIC examples. Having said that, since Stuart's rules were referred to, one can also look at Marty's solution as an example of the so-called Nice Loops Rule 2 whereby a strong link starts and ends at (8)r1c2 thus proving r1c2=8.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: September 15, 2015

Postby Luke » Tue Sep 22, 2015 5:19 am

Careful, Don and Marty, you are flirting with heresy! ;)
User avatar
Luke
2015 Supporter
 
Posts: 435
Joined: 06 August 2006
Location: Southern Northern California

Re: September 15, 2015

Postby DonM » Tue Sep 22, 2015 5:44 am

Luke wrote:Careful, Don and Marty, you are flirting with heresy! ;)


L-u-k-e, beware the dark side of The Force! (And you have a good memory of the days of the so-called 'bent' ALS. ) :)
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: September 15, 2015

Postby ronk » Tue Sep 22, 2015 4:36 pm

Leren wrote:
ronk wrote : Can you argue the case without knowing anything about ultimate values in the solution?

Yes. The reason is that discontinuous AICs fall within a more general construction that I might call a Kraken candidate, ...

Thanks for your very complete answer, a little lengthy but complete. :) I rarely ask questions that require a lengthy response.

Moreover, I apologize for not providing the correct quote, which happened because I didn't realize the topic changed between here and here. My bad.

In the first link Marty R. wrote:
Code: Select all
+-----------------+--------+---------------+
| 6    28   278   | 3 1 4  | 9    58  2578 |
| 9    3    1478  | 2 6 5  | 148  48  478  |
| 5    24   124   | 9 8 7  | 146  3   246  |
+-----------------+--------+---------------+
| 234  246  5     | 8 9 1  | 346  7   46   |
| 348  1    348   | 7 2 6  | 3458 9   458  |
| 7    9    68    | 5 4 3  | 2    1   68   |
+-----------------+--------+---------------+
| 2348 7    23489 | 6 5 29 | 48   248 1    |
| 248  2458 2489  | 1 7 29 | 458  6   3    |
| 1    256  26    | 4 3 8  | 7    25  9    |
+-----------------+--------+---------------+

(8=2)r1c2-(2=468)r34c2,r6c3=> -8r12c3

Something seems strange here. I can't see a flaw in my chain, which ends with r6c3=8. Looking at it another way, if r1c2<>8, then r12c3=8 and r6c3 cannot be=8. What's the explanation for this apparent contradiction?

It looked to me like Marty R. was not only using the chain left-to-right to get (8)r1c2 = (8)r6c3, but also right-to-left through the discontinuity (8)r12c3 to get the contradictory (8)r1c2 - (8)r6c3. Even for Marty, that's probably too crazy to be true. Again my bad.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA


Return to Puzzles