- Code: Select all
..4|3.8|.1.
...|.94|8..
9..|1..|.4.
---+---+---
5..|.16|9..
1..|...|..4
..8|74.|..5
---+---+---
.1.|..5|..2
..7|98.|...
.6.|4.1|7..
After singles/locked candidates/pairs:
- Code: Select all
*-----------------------------------------------------------*
| 7 25 4 | 3 6 8 | 25 1 9 |
| 236 235 1 | 25 9 4 | 8 2357 367 |
| 9 8 2356 | 1 25 7 | 235 4 36 |
|-------------------+-------------------+-------------------|
| 5 4 23 | 28 1 6 | 9 2378 378 |
| 1 7 236 | 258 235 9 | 236 2368 4 |
| 236 9 8 | 7 4 23 | 1 236 5 |
|-------------------+-------------------+-------------------|
| 348 1 39 | 6 7 5 | 34 389 2 |
| 234 235 7 | 9 8 23 | 3456 356 1 |
| 238 6 59 | 4 23 1 | 7 59 38 |
*-----------------------------------------------------------*
Here SS will apply swordfish, simple colors, multiple colors and xy-wings to solve it...
However, I'm seeking the shortest route to solve it... Shortest meaning the fewest advanced moves required...
- Code: Select all
*-----------------------------------------------------------*
| 7 25 4 | 3 6 8 | 25 1 9 |
|-236 235 1 |#25 9 4 | 8 2357 367 |
| 9 8 2356 | 1 #25 7 | 235 4 36 |
|-------------------+-------------------+-------------------|
| 5 4 23 | 28 1 6 | 9 2378 378 |
| 1 7 236 | 258 235 9 | 236 2368 4 |
|-236 9 8 | 7 4 @23 | 1 236 5 |
|-------------------+-------------------+-------------------|
| 348 1 39 | 6 7 5 | 34 389 2 |
| 234 235 7 | 9 8 @23 | 3456 356 1 |
|*238 6 59 | 4 *23 1 | 7 59 38 |
*-----------------------------------------------------------*
Firstly, 2 turbots (simple colors) eliminate 2 from r26c1:
[*+@]: r6c1-2-r6c6=2=r8c6=2=r9c5=2=r9c1-2-r6c1 => r6c1<>2
[*+#]: r2c1-2-r2c4=2=r3c5-2-r9c5=2=r9c1-2-r2c1 => r2c1<>2
These lead to some locked candidates in c123, plus a naked pair {36} in r26c1, which gives us a swordfish on 3:
- Code: Select all
*-----------------------------------------------------------*
| 7 25 4 | 3 6 8 | 25 1 9 |
|*36 *235 1 | 25 9 4 | 8 -2357 -367 |
| 9 8 356 | 1 25 7 | 235 4 36 |
|-------------------+-------------------+-------------------|
| 5 4 23 | 28 1 6 | 9 2378 378 |
| 1 7 236 | 258 235 9 | 236 2368 4 |
|*36 9 8 | 7 4 *23 | 1 -236 5 |
|-------------------+-------------------+-------------------|
| 48 1 39 | 6 7 5 | 34 389 2 |
| 24 *35 7 | 9 8 *23 |-3456 -356 1 |
| 28 6 59 | 4 23 1 | 7 59 38 |
*-----------------------------------------------------------*
Column swordfish on 3 in r268c126 => 3s eliminated from r268c345789
Next, a finned sashimi jellyfish on 2 enables us to eliminate 2 from r5c7:
- Code: Select all
*-----------------------------------------------------------*
| 7 25 4 | 3 6 8 | 25 1 9 |
| 36 235 1 | 25 9 4 | 8 257 67 |
| 9 8 356 | 1 *25 7 |*235 4 36 |
|-------------------+-------------------+-------------------|
| 5 4 23 | 28 1 6 | 9 2378 378 |
| 1 7 236 | 258 235 9 |-236 2368 4 |
| 36 9 8 | 7 4 *23 | 1 #26 5 |
|-------------------+-------------------+-------------------|
| 48 1 39 | 6 7 5 | 34 389 2 |
|*24 35 7 | 9 8 *23 | 456 56 1 |
|*28 6 59 | 4 *23 1 | 7 59 38 |
*-----------------------------------------------------------*
Row finned sashimi jellyfish on 2 in r3689c1567 with fin in b6 (r6c8) => r5c7<>2
(SS uses a multiple colors move which doesn't involve r89c1, equivalent to a "mutant finned sashimi swordfish")
Eventually we find an xy-wing to eliminate the 3 in r5c5:
- Code: Select all
*-----------------------------------------------------------*
| 7 25 4 | 3 6 8 | 25 1 9 |
| 36 235 1 | 25 9 4 | 8 257 67 |
| 9 8 356 | 1 25 7 | 235 4 36 |
|-------------------+-------------------+-------------------|
| 5 4 23 | 28 1 6 | 9 2378 378 |
| 1 7 236 | 258 -235 9 |*36 2368 4 |
| 36 9 8 | 7 4 *23 | 1 *26 5 |
|-------------------+-------------------+-------------------|
| 48 1 39 | 6 7 5 | 34 389 2 |
| 24 35 7 | 9 8 23 | 456 56 1 |
| 28 6 59 | 4 23 1 | 7 59 38 |
*-----------------------------------------------------------*
r6c8=2|6 => either r5c7 or r6c6 (or both) must be 3 => r5c5<>3
The puzzle is then solved with singles...
My question is, can any of the 5 major steps above be replaced/combined?
I don't like complex forcing chains, but xy-wings/xyz-wings/xyzw-wings are okay, and uniqueness moves are alright too...
As an example, the first 2 turbots perhaps could be replaced:
- Code: Select all
*-----------------------------------------------------------*
| 7 25 4 | 3 6 8 | 25 1 9 |
|*236 235 1 |*25 9 4 | 8 2357 367 |
| 9 8 2356 | 1 *25 7 | 235 4 36 |
|-------------------+-------------------+-------------------|
| 5 4 23 | 28 1 6 | 9 2378 378 |
| 1 7 236 | 258 235 9 | 236 2368 4 |
|*236 9 8 | 7 4 *23 | 1 236 5 |
|-------------------+-------------------+-------------------|
| 348 1 39 | 6 7 5 | 34 389 2 |
|*234 -235 7 | 9 8 *23 | 3456 356 1 |
|*238 6 59 | 4 *23 1 | 7 59 38 |
*-----------------------------------------------------------*
In b8, either r8c6=2 or r9c5=2
r8c6=2 => r8c2<>2
r9c5=2 => r8c6,r3c5<>2 => r6c6=r2c4=2 => r26c1<>2 => r8c1=2 => r8c2<>2
Therefore r8c2<>2
From there we can find a hidden triple {248} in r789c1 and proceed with the ensuring swordfish on 3...
However, I couldn't find an elegant fish to represent the above reasoning... Any fishing expert?
I suspect the solving route (without complex forcing chains) must follow the routine:
1. eliminate 2 from r26c1 or r8c2 (using turbots/simple colors)
2. eliminate 3 from r789c1 (using a hidden triple/naked pair)
3. eliminate 3 from r6c8 (using a swordfish)
4. eliminate 2 from r5c7 (using a finned sashimi jellyfish/mutant finned sashimi swordfish/multiple colors)
5. eliminate 3 from r5c5 (using an xy-wing)
Is there any detour?