Here is a quick 17 RSCs scenario using your approach:
Assign one RSC as the top level "root" (Z), which is linked to 4 other RSCs (A,B,C,D) - the middle level "moms". Each mom is linked to 3 other bottom level RSCs - "kids" (A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3):
- Code: Select all
_____________Z_____________
/ / \ \
A B C D
/|\ /|\ /|\ /|\
/ | \ / | \ / | \ / | \
/ | \ / | \ / | \ / | \
A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
As for additional links among "kids", each kid is linked to the same index kids of adjacent groups (A & D are considered adjacent) and different index kids of the groups 2 steps away. E.g. B2 is linked to A2,C2,D1,D3.
Verification:
Obviously the root Z is connected to all other RSCs.
Each mom is directly linked to Z and its own kids. Z bridges it to all other moms. Its own kids bridge it to all other kids.
Each kid is directly linked to its own mom and 1 kids each from the 2 neighbour groups, and 2 kids from the opposite group. Its mom bridges it to Z and other kids of the same group. The linked kids bridge it to other moms and all other kids (e.g. for B2, the linked kids A2,C2 bridge it to A,C,D2, while D1,D3 bridge it to D,A1,A3,C1,C3).
Here is the SCM:
- Code: Select all
Z A B C D A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
Z . 1 1 1 1 . . . . . . . . . . . .
A 1 . . . . 1 1 1 . . . . . . . . .
B 1 . . . . . . . 1 1 1 . . . . . .
C 1 . . . . . . . . . . 1 1 1 . . .
D 1 . . . . . . . . . . . . . 1 1 1
A1 . 1 . . . . . . 1 . . . 1 1 1 . .
A2 . 1 . . . . . . . 1 . 1 . 1 . 1 .
A3 . 1 . . . . . . . . 1 1 1 . . . 1
B1 . . 1 . . 1 . . . . . 1 . . . 1 1
B2 . . 1 . . . 1 . . . . . 1 . 1 . 1
B3 . . 1 . . . . 1 . . . . . 1 1 1 .
C1 . . . 1 . . 1 1 1 . . . . . 1 . .
C2 . . . 1 . 1 . 1 . 1 . . . . . 1 .
C3 . . . 1 . 1 1 . . . 1 . . . . . 1
D1 . . . . 1 1 . . . 1 1 1 . . . . .
D2 . . . . 1 . 1 . 1 . 1 . 1 . . . .
D3 . . . . 1 . . 1 1 1 . . . 1 . . .
Z A B C D A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3
Z 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
A 1 0 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2
B 1 2 0 2 2 2 2 2 1 1 1 2 2 2 2 2 2
C 1 2 2 0 2 2 2 2 2 2 2 1 1 1 2 2 2
D 1 2 2 2 0 2 2 2 2 2 2 2 2 2 1 1 1
A1 2 1 2 2 2 0 2 2 1 2 2 2 1 1 1 2 2
A2 2 1 2 2 2 2 0 2 2 1 2 1 2 1 2 1 2
A3 2 1 2 2 2 2 2 0 2 2 1 1 1 2 2 2 1
B1 2 2 1 2 2 1 2 2 0 2 2 1 2 2 2 1 1
B2 2 2 1 2 2 2 1 2 2 0 2 2 1 2 1 2 1
B3 2 2 1 2 2 2 2 1 2 2 0 2 2 1 1 1 2
C1 2 2 2 1 2 2 1 1 1 2 2 0 2 2 1 2 2
C2 2 2 2 1 2 1 2 1 2 1 2 2 0 2 2 1 2
C3 2 2 2 1 2 1 1 2 2 2 1 2 2 0 2 2 1
D1 2 2 2 2 1 1 2 2 2 1 1 1 2 2 0 2 2
D2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 0 2
D3 2 2 2 2 1 2 2 1 1 1 2 2 2 1 2 2 0
Note in this scenario 5 of the nodes (Z,A,B,C,D) have 4 direct links only, as we shown earlier, for (17,5) some nodes must use fewer than the maximum allowed 5 direct links because 17*5=85 is an odd number.