yzfwsf wrote:The score given by SE may be too high.
Hi YZF,
I am glad that finally you got interested in the shortbacks of the current rating system. Actually, this puzzle is solvable by an AIC with a group and a basic AIC, and such cases are not rare among the SE 8.3 puzzles.
- Code: Select all
.--------------------.------------------------.---------------------.
| 239 12379 6 | 4 789 189-7 | 5 138 178 |
| 45 157 147 | 1678 2 3 | 1467 9 1478 |
| 8 1379 13479 | 167 679 5 | 13467 1346 2 |
:--------------------+------------------------+---------------------:
| 7 13689 139 | 568 5689 4 | 2 1568 1589 |
| 2469 12689 5 | 3 689 2689 | 1469 7 1489 |
| 2469 2689 249 | a27-568 1 d26789 | 469 4568 3 |
:--------------------+------------------------+---------------------:
| 2356 4 237 | 9 35678 168-27 | 137 1235 157 |
| 2356 23567 8 | b12567 34567 16-27 | 13479 12345 14579 |
| 1 23579 2379 | b257 3457 c27 | 8 2345 6 |
'--------------------'------------------------'---------------------'
1. AIC with a group (continuos loop): (2)r6c4 = r89c4 - (2=7)r9c6 - r6c6 = (7-2)r6c4 => -568 r6c4, -27 r78c6, -7 r1c6; 1 single
- Code: Select all
.--------------------.---------------------.--------------------.
| 239 12379 6 | 4 789 189 | 5 c138 178 |
| 45 157 147 | a1678 2 3 | 1467 9 b1478 |
| 8 1379 13479 | 167 679 5 | 13467 1346 2 |
:--------------------+---------------------+--------------------:
| 7 13689 139 | 56-8 5689 4 | 2 d168 189 |
| 2469 12689 5 | 3 689 2689 | 1469 7 1489 |
| 2469 2689 249 | 27 1 26789 | 469 5 3 |
:--------------------+---------------------+--------------------:
| 2356 4 237 | 9 35678 168 | 137 123 157 |
| 2356 23567 8 | 12567 34567 16 | 13479 1234 14579 |
| 1 23579 2379 | 257 3457 27 | 8 234 6 |
'--------------------'---------------------'--------------------'
2. Basic AIC (2-string kite): (8)r2c4 = r2c9 - r1c8 = r4c8 => -8 r4c4; lste
Now I am analyzing Denis Berthier's cbg-000 collection of puzzles, and I got the following results about the SE 8.4 puzzles: GC-class - 29,2%, ALSC-class - 45,5%, FC-class - 25,3%.
GC-class - all the puzzles solvable by the standard patterns (SP), AICs with or without groups;
ALSC-class - all the above and all the puzzles solvable by AICs with almost locked sets;
FC-class - all the above and all the puzzles solvable by forcing chains (krakens). I mean that these forcing chains can contain group- and ALS-nodes.
I will publish my statistics later on.
---
EDIT: corrected a typo.