SE = 7.2

Post puzzles for others to solve here.

SE = 7.2

Postby jco » Sat Oct 11, 2025 3:15 pm

Code: Select all
,-----------------------,
| . 7 . | . 4 . | 6 . . |
| . . . | . . 6 | . . . |
| . . . | . . 9 | 3 . . |
|-------+-------+-------|
| 4 . . | . . 8 | . . . |
| . 8 3 | 2 . 1 | . . . |
| 5 . . | . . . | 7 . 8 |
|-------+-------+-------|
| . 3 4 | 9 . . | . . . |
| 7 . . | 4 8 . | 2 . 5 |
| . . 5 | . . . | . . 7 |
'-----------------------'
.7..4.6.......6........93..4....8....832.1...5.....7.8.349.....7..48.2.5..5.....7


(Source: Sudoku Architect)
JCO
jco
 
Posts: 852
Joined: 09 June 2020

Re: SE = 7.2

Postby P.O. » Sat Oct 11, 2025 4:23 pm

basics:
Hidden Text: Show
Code: Select all
( n3r8c6   n2r9c6   n5r1c6   n4r6c6   n7r7c6   n2r7c1   n3r4c9   n3r9c8   n4r9c7
  n5r7c5   n5r4c4   n7r5c5   n7r4c3   n8r9c1   n9r8c8   n9r9c2 )

intersections:
((((2 0) (1 9 3) (1 2 9)) ((2 0) (2 9 3) (1 2 4 9)) ((2 0) (3 9 3) (1 2 4)))
 (((1 0) (1 1 1) (1 3 9)) ((1 0) (2 1 1) (1 3 9)) ((1 0) (3 1 1) (1 6))))

TRIPLET COL: ((4 2 4) (1 2 6)) ((6 2 4) (1 2 6)) ((8 2 7) (1 6))
(((2 2 1) (2 4 5)) ((3 2 1) (2 4 5 6)))

intersection:
((((2 0) (4 2 4) (1 2 6)) ((2 0) (6 2 4) (1 2 6))))

QUAD COL: ((1 8 3) (1 8)) ((4 8 6) (1 2 6)) ((6 8 6) (1 2 6)) ((7 8 9) (1 6 8))
(((2 8 3) (1 4 5 7 8)) ((3 8 3) (1 4 5 7 8)) ((5 8 6) (4 5 6)))

Code: Select all
139   7     289   138   4     5     6     18    129           
139   45    289   1378  123   6     1589  457   1249           
16    45    268   178   12    9     3     457   124           
4     126   7     5     69    8     19    126   3             
69    8     3     2     7     1     59    45    469           
5     126   169   36    369   4     7     126   8             
2     3     4     9     5     7     18    168   16             
7     16    16    4     8     3     2     9     5             
8     9     5     16    16    2     4     3     7             

9r5c1 => r247c7 <> 1
 r5c1=9 - r6n9{c3 c5} - c5n3{r6 r2} - r2c1{n39 n1}
 r5c1=9 - b6n9{r5c79 r4c7}
 r5c1=9 - r5n6{c1 c9} - r7c9{n6 n1}
 
=> r5c1 <> 9
ste.
P.O.
 
Posts: 2054
Joined: 07 June 2021

Re: SE = 7.2

Postby Cenoman » Sat Oct 11, 2025 7:54 pm

Code: Select all
 +--------------------+--------------------+----------------------+
 |  139   7     289   |  138    4     5    |  6      18    129    |
 |  139   45    289   |  1378   123   6    |  1589   457   1249   |
 |  16    45    268   |  178    12    9    |  3      457   124    |
 +--------------------+--------------------+----------------------+
 |  4     126*  7     |  5      69    8    |  19    a126*  3      |
 | c69    8     3     |  2      7     1    |  59     45    49-6   |
 |  5     126* b169*  |  36     369   4    |  7     a126*  8      |
 +--------------------+--------------------+----------------------+
 |  2     3     4     |  9      5     7    |  18     168   16     |
 |  7     16*   16*   |  4      8     3    |  2      9     5      |
 |  8     9     5     |  16     16    2    |  4      3     7      |
 +--------------------+--------------------+----------------------+

MUG(126)r4c28,r6c238,r8c23 using internals:
(6)r46c8 == (9)r6c3 - (9=6)r5c1 => -6 r5c9; ste
Cenoman
Cenoman
 
Posts: 3145
Joined: 21 November 2016
Location: France

Re: SE = 7.2

Postby pjb » Sat Oct 11, 2025 11:01 pm

Alternatively, as the MUG is a "type 1", r6c3 = 9; stte

Still struggling to find a solve-in-one chain

Phil
pjb
2014 Supporter
 
Posts: 2731
Joined: 11 September 2011
Location: Sydney, Australia

Re: SE = 7.2

Postby Cenoman » Sun Oct 12, 2025 5:06 pm

pjb wrote:Alternatively, as the MUG is a "type 1", r6c3 = 9; stte

Hi Phil,
are you sure that 6r4c8 & 6r6c8 can be part of the deadly pattern ?
To me the 7-cell MUG is made with assembling UR (16)r68c23 & UR (12)r46c28. Candidate 6r4c2 can be added to the pattern as a 'no-solution' one.
But to me, the pattern
Code: Select all
126     | 126
126  16 | 126
--------------
 16  16 |
is not a valid DP (missing the rule of multiple solutions having a common footprint)

Code: Select all
126     | 26
126  16 | 26
--------------
 16  16 |
is an alternative MUG, but its guardians have no solving target.

For a shorter solution than mine above:
MUG(126)r4c28,r6c238,r8c23 using mixed internals-external:
(6)r46c8 == (6)r5c1 => -6 r5c9; ste
Cenoman
Cenoman
 
Posts: 3145
Joined: 21 November 2016
Location: France


Return to Puzzles