Nice solutions! Nice to see the different views on the same elimination.
For that target (8)r6c5, I found a move that was hard to notate
(the idea comes from a wing used for that target in my 2-step solution)
- Code: Select all
,-----------------------------------------------------------------------,
| 46 246 1 | 7 9 5 | 8 24 3 |
| 9 27 3 | 18 4 128 | 5 127 6 |
| 5 8 47 | 3 12 6 | 1249 12479 279 |
|----------------------+-------------------------+----------------------|
| 2 B149 B489 | 6 5 A(4)178 |A49 3 789 |
|a14 5 6 |cb 1489 3 a(4)178 | 249 2479 2789 |
| 7 3 C489 |cbCB489 z2-8 y(4)28 | 6 5 1 |
|----------------------+-------------------------+----------------------|
| 8 49 5 | 14 16 3 | 7 1269 29 |
| 3 479 479 | 2 168 148 | 19 169 5 |
| 16 16 2 | 5 7 9 | 3 8 4 |
'-----------------------------------------------------------------------'
Kraken Column (4)r6c456 => -8 r6c5; ste
||(49)r4c67 - (9)r4c23|(4)r6c4 = (98)r6c34 (A,B,C)
||(41)r5c61 - (1|4)r56c4 = (98)r4c56 (a,b,c)
||(42)r6c56 (y,z)
My first way was in two steps, the second one hitting that target.
1. (9=472)r278c2 - r2c6 = r6c6 - (2=8)r6c5 - (8=169)r8c578 => -9 r8c3
2. (2)r6c5 = (2-4)r6c6 = (4-8)r8c6 = (8)r8c5 => -8 r6c5; ste
The second move (wing) was the source of the idea for finding the one-stepper.