.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------+----------------+----------------+
! 1 367 8 ! 239 67 49 ! 5 679 24 !
! 367 9 3567 ! 235 678 145 ! 18 67 24 !
! 4 567 2 ! 59 678 159 ! 18 679 3 !
+----------------+----------------+----------------+
! 79 157 1579 ! 59 3 8 ! 2 4 6 !
! 23 2345 345 ! 6 1 25 ! 7 8 9 !
! 2689 268 69 ! 7 4 29 ! 3 5 1 !
+----------------+----------------+----------------+
! 5 14 14 ! 8 9 3 ! 6 2 7 !
! 236 236 36 ! 4 5 7 ! 9 1 8 !
! 789 78 79 ! 1 2 6 ! 4 3 5 !
+----------------+----------------+----------------+
105 candidates
The puzzle is in Z4:
naked-pairs-in-a-column: c4{r3 r4}{n5 n9} ==> r2c4≠5, r1c4≠9
finned-x-wing-in-columns: n5{c4 c2}{r3 r4} ==> r4c3≠5
biv-chain[3]: r6c3{n6 n9} - b7n9{r9c3 r9c1} - c1n8{r9 r6} ==> r6c1≠6
biv-chain[4]: r5c6{n2 n5} - r4n5{c4 c2} - c2n1{r4 r7} - c2n4{r7 r5} ==> r5c2≠2
biv-chain[3]: c2n2{r8 r6} - r6n6{c2 c3} - r8c3{n6 n3} ==> r8c2≠3
biv-chain[3]: c2n3{r1 r5} - r5n4{c2 c3} - c3n5{r5 r2} ==> r2c3≠3
biv-chain[4]: r6c3{n6 n9} - b5n9{r6c6 r4c4} - r4n5{c4 c2} - b1n5{r3c2 r2c3} ==> r2c3≠6
z-chain[4]: c2n4{r5 r7} - c2n1{r7 r4} - b4n5{r4c2 r5c3} - r5n4{c3 .} ==> r5c2≠3
stte
It has 1-step solutions, but that requires long chains. Here are two with braids[8]:
- Code: Select all
braid[8]: r6c6{n2 n9} - r1c6{n9 n4} - r2n4{c6 c9} - r2n2{c9 c4} - r5c1{n2 n3} - r2n3{c1 c3} - r6c3{n9 n6} - r8c3{n6 .} ==> r5c6≠2
(same elimination as eleven, different pattern)
stte
- Code: Select all
braid[8]: r1c6{n9 n4} - r2n4{c6 c9} - r2n2{c9 c4} - r6c3{n9 n6} - c6n2{r6 r5} - r5c1{n2 n3} - r2n3{c1 c3} - r8c3{n6 .} ==> r6c6≠9
stte
As braids are not a very likeable pattern, one may prefer whips, but that requires still longer ones:
- Code: Select all
whip[10]: c6n9{r3 r6} - r1c6{n9 n4} - r2n4{c6 c9} - r2n2{c9 c4} - c4n5{r2 r4} - r5c6{n5 n2} - r5c1{n2 n3} - r2n3{c1 c3} - r8c3{n3 n6} - r6c3{n6 .} ==> r3c4≠9
stte
- Code: Select all
whip[11]: r1c6{n9 n4} - r2n4{c6 c9} - r2n2{c9 c4} - c4n3{r2 r1} - c4n9{r1 r3} - r4c4{n9 n5} - r5c6{n5 n2} - r5c1{n2 n3} - c2n3{r5 r8} - r8c3{n3 n6} - r6c3{n6 .} ==> r6c6≠9
stte
I prefer 2-step solutions with shorter and simpler chains:
- Code: Select all
biv-chain[5]: r8c3{n3 n6} - r6c3{n6 n9} - b5n9{r6c6 r4c4} - r3c4{n9 n5} - b1n5{r3c2 r2c3} ==> r2c3≠3
biv-chain[6]: r5c1{n2 n3} - r2n3{c1 c4} - b2n2{r2c4 r1c4} - r1c9{n2 n4} - r1c6{n4 n9} - r6c6{n9 n2} ==> r5c6≠2, r6c1≠2, r6c2≠2
stte
OR:
- Code: Select all
biv-chain[5]: r8c3{n3 n6} - r6c3{n6 n9} - b5n9{r6c6 r4c4} - r3c4{n9 n5} - b1n5{r3c2 r2c3} ==> r2c3≠3
biv-chain[6]: r1c6{n9 n4} - b3n4{r1c9 r2c9} - r2n2{c9 c4} - r2n3{c4 c1} - r5c1{n3 n2} - b5n2{r5c6 r6c6} ==> r6c6≠9
stte
Note that while the simplest-first solution (in Z4) uses chains with z-candidates, the above two solutions use only elementary bivalue-chains.