- Code: Select all
+----------------------+----------------------------+---------------------+
| 1 249* 3 | 24569 256 469 | 7 8 249* |
| 249* 5 6 | 2479 278 4789 | 1 249* 3 |
| 7 8 249* | 1 23 349 | 249* 6 5 |
+----------------------+----------------------------+---------------------+
| 234 124 24 | 37 9 137 | 6 5 8 |
| 3589 6 58 | 35 4 2 | 39 7 1 |
| 359 19 7 | 8 356 136 | 2349 249 249 |
+----------------------+----------------------------+---------------------+
| 6 7 249* | 249 1 5 | 8 3 249* |
| 58-249* 3 1 | 24679 2678 46789 | 2459 249* 67 |
| 249-58 249* 58 | 234679 23678 346789 | 2459* 1 67 |
+----------------------+----------------------------+---------------------+
1. Tridagon (249)b1379 having 3 guardians: 58r8c1, 5r9c7
Note that 5r8c1 & 5r9c7 have the same valence (both conjugates of 5r8c7), therefore (5,8)r8c1 is an effective set of guardians => -249 r8c1; NP(58)b7p49 => -58 r9c1
A bunch of classical steps:
- Code: Select all
+---------------------+----------------------------+---------------------+
| 1 249 3 | 24569 56-2 469 | 7 8 249 |
| 24-9 5 6 | 247-9 278 4789 | 1 249 3 |
| 7 8 249 | 1 23 349 | 24-9 6 5 |
+---------------------+----------------------------+---------------------+
| 234 124 24 | 37 9 137 | 6 5 8 |
| 3589 6 58 | 35 4 2 | 39 7 1 |
| 59-3 19 7 | 8 356 136 | 2349 24-9 249 |
+---------------------+----------------------------+---------------------+
| 6 7 249 | 249 1 5 | 8 3 249 |
| 58 3 1 | 24679 2678 46789 | 245-9 249 67 |
| 249 249 58 | 23467-9 23678 34678-9 | 2459 1 67 |
+---------------------+----------------------------+---------------------+
2. (5)r1c5 = (5-6)r1c4 = r89c4 - r89c5 = (65)r16c5 => -2 r1c5
3. (3)r4c1 = r4c46 - (3=5)r5c4 - r6c5 = (5)r6c1 => -3 r6c1
4. (9)r5c7 = (9-8)r5c1 = (8-5)r8c1 = (5)r8c7 => -9 r8c7
5. Kraken cell (2459)r9c7 =>-9r2c1
(2|4)r9c7 - (24)r9c12 = (2|4-9)r7c3 = (9)r3c3
(5)r9c7 - r9c3 = r5c3 - (5=3)r5c4 - r4c46 = r4c1 - (3=589)r568c1
(9)r9c7-r5c7=(9)r5c1
6. Kraken cell (2459)r9c7 =>-9r3c7
(2|4)r9c7 - (24)r9c12 = (2|4-9)r7c3 = (9)r3c3
(5)r9c7 - r9c3 - (5=3)r5c4 - (3=9)r5c7
(9)r9c7
7. Subsequent X-chains:
#(9)r8c46 = r8c8 - ^r2c8 = r2c46 - *r3c6 = r3c3 - r7c3 = r9c12*# - r9c7 = r56c7^ => -9 r9c6*, r6c8^, r9c4#
(9)r123c6 = r8c6 - r8c8 = r2c8 => -9 r2c4
A uniqueness step:
- Code: Select all
+---------------------+--------------------------+---------------------+
| 1 249 3 | 24569 56 469 | 7 8 249 |
| 24 5 6 | 247 278* 4789* | 1 249 3 |
| 7 8 249 | 1 23 349 | 24 6 5 |
+---------------------+--------------------------+---------------------+
| 234 124 24 | 37 9 137 | 6 5 8 |
| 3589 6 58 | 35 4 2 | 39 7 1 |
| 59 19 7 | 8 56-3 136 | 2349 24 249 |
+---------------------+--------------------------+---------------------+
| 6 7 249 | 249 1 5 | 8 3 249 |
| 58 3 1 | 24679 #278-6* 46789 | 245 249 67* |
| 249 249 58 | 23467 2378-6* 34678* | 2459 1 67* |
+---------------------+--------------------------+---------------------+
8. MUG(678)r2c56, r8c59, r9c569 using mixed internals-external
(23)r389c5
(3)r9c6 - r3c6 = (3)r3c5
(4)r9c6 - (4=295)r9c127 - r9c3 = r5c3 - (5=3)r5c4
(7)r2c4 - (7=3)r4c4
=> -3 r6c5; NP(56)r16c5 (-6r89c5)
The closure of the dragon's mouth:
- Code: Select all
+---------------------+-------------------------+---------------------+
| 1 249 3 | 24569 56 469 | 7 8 249 |
| 24 5 6 | 247 278 4789 | 1 249 3 |
| 7 8 249 | 1 23 349 | 24 6 5 |
+---------------------+-------------------------+---------------------+
| 234 124 24 | 37 9 137 | 6 5 8 |
| 3589 6 8-5 | 35 4 2 | 39 7 1 |
| 59 19 7 | 8 56 136 | 2349 24 249 |
+---------------------+-------------------------+---------------------+
| 6 7 249 | 249 1 5 | 8 3 249 |
| 8-5 3 1 | 24679 278 46789 | 5-24 249 67 |
| 249 249 5-8 | 367-24 378-2 3678-4 | 2459 1 67 |
+---------------------+-------------------------+---------------------+
9. Triple Kraken cells (249)r9c1, (247)r2c4, (249)r7c4 =>
(2)r9c1* - [(2=4)r2c1 - (4=7)r2c4 - (7=3)r4c4 - (3=24)r24c1] = (2)r2c4 - [(2=9)r7c4 - r8c46 = r8c8 - (9=24)r2c18] = (4)r7c4^
(4)r9c1^ - [(4=2)r2c1 - (2=7)r2c4 - (7=3)r4c4 - (3=24)r24c1] = (4)r2c4 - [(4=9)r7c4 - r8c46 = r8c8 - (9=24)r2c18] = (2)r7c4*
(9)r9c1 - (9=5)r6c1 - r8c1 = r9c3 - (5=249)r9c127*^
=> -2 r9c45*, -4r9c46^; NQ(3678)r9c4569 => -8 r9c3, 4 placements (+5r9c3, +8r8c1, +8r5c3, +5r8c7)
- Code: Select all
+--------------------+-----------------------+---------------------+
| 1 249 3 | 24569 56 469 | 7 8 249 |
| a24* 5 6 | 7-24 278 4789 | 1 a249* 3 |
| 7 8 249 | 1 23 349 | 24 6 5 |
+--------------------+-----------------------+---------------------+
| 234 124 24 | 37 9 137 | 6 5 8 |
| 359 6 8 | 35 4 2 | 39 7 1 |
| 59 19 7 | 8 56 136 | 2349 24 249 |
+--------------------+-----------------------+---------------------+
| 6 7 249 | e249 1 5 | 8 3 249 |
| 8 3 1 | d24679 d27 d4679 | 5 c249* 67 |
| 249 249 5 | 367 378 3678 | 249 1 67 |
+--------------------+-----------------------+---------------------+
10. The original tridagon has eventually only one guardian true => (249)r2c18, r8c8 are Remote Triple
Together with empty rectangle (2,4)b8: (2,4)r2c18 == r8c8 - r8c456 = r7c4 => -24 r2c4; 20 placements
End with a remote pair:
- Code: Select all
+-----------------+-------------------+-------------------+
| 1 24* 3 | 249 5 6 | 7 8 9-24 |
| 24 5 6 | 7 28 489 | 1 249 3 |
| 7 8 9 | 1 23 34 | 24* 6 5 |
+-----------------+-------------------+-------------------+
| 24 1 24 | 3 9 7 | 6 5 8 |
| 3 6 8 | 5 4 2 | 9 7 1 |
| 5 9 7 | 8 6 1 | 3 24 24 |
+-----------------+-------------------+-------------------+
| 6 7 24 | 249 1 5 | 8 3 249 |
| 8 3 1 | 249 7 49 | 5 249 6 |
| 9 24* 5 | 6 38 38 | 24* 1 7 |
+-----------------+-------------------+-------------------+
11. (2)r1c2 = r9c2 - r9c7 = r3c7 => -24 r1c9; ste