I found a solution in two steps, inspired by totuan's very nice one stepper.
This solution is based on the UR(28)r35c46, that (unfortunately) needed a
preliminar loop (step 1) to function due to the digit 6 in r2c5.
Without that digit, I would have an almost UR chain
[7r7c2 = (7-4)r7c9 = r3c9 - r3c6 = (4-1)r2c5 = UR]
giving bte as the solution below.
- Code: Select all
.---------------------------------------------------------------.
| 368 4 58 | 1268 9 1268 | 235 7 123 |
| 2 69-7 579 | 167 146 3 | 59 159-4 8 |
| 38 a79 1 | 278 5 278-4 | 6 b49 c234 |
|------------------+-------------------------+------------------|
| 1468 169 489 | 1356789 13468 146789 | 3578 2 1367 |
| 7 126 3 | 12568 168 1268 | 4 1568 9 |
| 1468 5 2489 | 1236789 13468 1246789 | 378 168 1367 |
|------------------+-------------------------+------------------|
| 5 e37 6 | 389 2 89 | 1 489 d47 |
| 9 123-7 27 | 4 1368 168 | 278 68 5 |
| 14 8 24 | 169 7 5 | 29 3 26 |
'---------------------------------------------------------------'
1. Loop (7=9)r3c2 - (9=4)r3c8 - r3c9 = (4-7)r7c9 = r7c2 - (7)r3c2
=> -4 r2c8,r3c6 , -7 r28c2 [1 placement]
-----
2. UR(28) r35 c46 using internals
- Code: Select all
.---------------------------------------------------------------------.
| 368 4 58 | 1268 9 1268 | 235 7 123 |
| 2 69 a579 | b167 4 3 | 59 c159 8 |
| 38 9-7 1 | A[28](7) 5 A[28](7) | 6 49 234 |
|------------------+-------------------------------+------------------|
| 1468 169 489 | 1356789 g1368 146789 | 3578 2 1367 |
| 7 126 3 | fe[28](16)(5) g168 f[28](16) | 4 d1568 9 |
| 1468 5 2489 | 1236789 g1368 1246789 | 378 168 1367 |
|------------------+-------------------------------+------------------|
| 5 j37 6 | i389 2 89 | 1 489 47 |
| 9 123 27 | 4 h1368 168 | 278 68 5 |
| 14 8 24 | 169 7 5 | 29 3 26 |
'---------------------------------------------------------------------'
(7)r3c46 = [(7)r2c3 = (7-1)r2c4 = (1-5)r2c8 = r5c8 - (5)r5c4 *=* (1|6)r5c46 - r456c5 = (1|6-3)r8c5 = r7c4 - (3=7)r7c2]
=> -7 r3c2; bte [3 LC eliminations that lead to a NQ (at b5)]