A friend suggested that I solve the following puzzle and I confess that I can't find a satisfactory resolution.
What would be your best resolution?
89....26.2......575.12.....1.5.376.....8.6......12.7.......45..954.....2.1.....46
puzzle: Show
Robert
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 8 9 37 ! 3457 1457 135 ! 2 6 134 !
! 2 346 36 ! 3469 14689 1389 ! 13489 5 7 !
! 5 3467 1 ! 2 46789 389 ! 3489 389 3489 !
+-------------------+-------------------+-------------------+
! 1 28 5 ! 49 3 7 ! 6 289 489 !
! 347 237 2379 ! 8 459 6 ! 1349 1239 13459 !
! 346 368 3689 ! 1 2 59 ! 7 389 34589 !
+-------------------+-------------------+-------------------+
! 367 23678 23678 ! 379 1789 4 ! 5 13789 1389 !
! 9 5 4 ! 367 1678 138 ! 138 1378 2 !
! 37 1 378 ! 3579 5789 2 ! 389 4 6 !
+-------------------+-------------------+-------------------+
180 candidates.
hidden-pairs-in-a-row: r3{n6 n7}{c2 c5} ==> r3c5≠9, r3c5≠8, r3c5≠4, r3c2≠4, r3c2≠3
hidden-single-in-a-block ==> r2c2=4
whip[1]: b1n3{r2c3 .} ==> r5c3≠3, r6c3≠3, r7c3≠3, r9c3≠3
whip[1]: b2n4{r1c5 .} ==> r1c9≠4
biv-chain[3]: r5n5{c9 c5} - r6c6{n5 n9} - b4n9{r6c3 r5c3} ==> r5c9≠9
z-chain[4]: c5n4{r1 r5} - b5n5{r5c5 r6c6} - r1n5{c6 c4} - r1n4{c4 .} ==> r1c5≠1, r1c5≠7
biv-chain[3]: r1n1{c9 c6} - c6n5{r1 r6} - b6n5{r6c9 r5c9} ==> r5c9≠1
t-whip[5]: r1c3{n7 n3} - r1c9{n3 n1} - r1c6{n1 n5} - r6c6{n5 n9} - c3n9{r6 .} ==> r5c3≠7
biv-chain[4]: c1n6{r7 r6} - b4n4{r6c1 r5c1} - r5n7{c1 c2} - r3c2{n7 n6} ==> r7c2≠6
t-whip[6]: r1c3{n7 n3} - r1c9{n3 n1} - r1c6{n1 n5} - r6c6{n5 n9} - c3n9{r6 r5} - c3n2{r5 .} ==> r7c3≠7
finned-x-wing-in-columns: n7{c3 c4}{r1 r9} ==> r9c5≠7
t-whip[6]: r9n7{c3 c4} - r9n5{c4 c5} - r1c5{n5 n4} - r5c5{n4 n9} - r5c3{n9 n2} - c2n2{r5 .} ==> r7c2≠7
z-chain[4]: r5n7{c2 c1} - r9c1{n7 n3} - r7c2{n3 n8} - r4c2{n8 .} ==> r5c2≠2
z-chain[4]: r5c2{n3 n7} - r5c1{n7 n4} - r6n4{c1 c9} - c9n5{r6 .} ==> r5c9≠3
t-whip[5]: c2n3{r6 r7} - c2n2{r7 r4} - c8n2{r4 r5} - r5n1{c8 c7} - r5n3{c7 .} ==> r6c1≠3
t-whip[7]: r9c3{n8 n7} - r1c3{n7 n3} - r1c9{n3 n1} - r1c6{n1 n5} - r6c6{n5 n9} - c3n9{r6 r5} - c3n2{r5 .} ==> r7c3≠8
biv-chain[5]: b4n4{r5c1 r6c1} - c1n6{r6 r7} - r7c3{n6 n2} - r5n2{c3 c8} - b6n1{r5c8 r5c7} ==> r5c7≠4
hidden-single-in-a-column ==> r3c7=4
z-chain[5]: r6n4{c9 c1} - c1n6{r6 r7} - r7c3{n6 n2} - b4n2{r5c3 r4c2} - r4n8{c2 .} ==> r6c9≠8
z-chain[5]: b6n8{r6c8 r4c9} - r4c2{n8 n2} - c8n2{r4 r5} - c8n1{r5 r8} - c8n7{r8 .} ==> r7c8≠8
z-chain[5]: b6n8{r6c8 r4c9} - r4c2{n8 n2} - c8n2{r4 r5} - c8n1{r5 r7} - c8n7{r7 .} ==> r8c8≠8
z-chain[6]: r4n9{c9 c4} - r4n4{c4 c9} - r6n4{c9 c1} - c1n6{r6 r7} - r7c3{n6 n2} - r5c3{n2 .} ==> r5c8≠9, r5c7≠9
whip[6]: r2n1{c6 c7} - r1c9{n1 n3} - r3n3{c9 c6} - r8c6{n3 n8} - c7n8{r8 r9} - c7n9{r9 .} ==> r1c6≠1
hidden-single-in-a-row ==> r1c9=1
t-whip[6]: c7n9{r9 r2} - r3n9{c9 c6} - r6c6{n9 n5} - r1c6{n5 n3} - r1c3{n3 n7} - r9c3{n7 .} ==> r9c7≠8
finned-x-wing-in-columns: n8{c7 c6}{r8 r2} ==> r2c5≠8
whip[1]: c5n8{r9 .} ==> r8c6≠8
biv-chain[3]: r8c6{n3 n1} - r7n1{c5 c8} - b9n7{r7c8 r8c8} ==> r8c8≠3
biv-chain[3]: b2n1{r2c5 r2c6} - r2n8{c6 c7} - r8n8{c7 c5} ==> r8c5≠1
biv-chain[4]: r7n1{c8 c5} - r2n1{c5 c6} - r2n8{c6 c7} - c7n9{r2 r9} ==> r7c8≠9
biv-chain[4]: r8n8{c5 c7} - r2n8{c7 c6} - c6n1{r2 r8} - r8c8{n1 n7} ==> r8c5≠7
biv-chain[4]: r1n7{c3 c4} - r3c5{n7 n6} - r8c5{n6 n8} - r9n8{c5 c3} ==> r9c3≠7
singles ==> r9c3=8, r1c3=7, r3c2=6, r2c3=3, r3c5=7, r5c2=7, r3c6≠3
naked-triplets-in-a-column: c5{r1 r5 r9}{n5 n4 n9} ==> r7c5≠9, r2c5≠9
finned-x-wing-in-rows: n9{r7 r4}{c4 c9} ==> r6c9≠9
biv-chain[2]: c7n9{r2 r9} - r7n9{c9 c4} ==> r2c4≠9
stte
DEFISE wrote:I forgot to specify that I did not implement the exotic patterns (MSLS, Exocet, etc) nor even the loops.
I don't know if this is the case with SudokuRules by Denis.