Robert's puzzles 2022-04-02

Post puzzles for others to solve here.

Robert's puzzles 2022-04-02

Postby Mauriès Robert » Sat Apr 02, 2022 4:37 pm

Hi all,
I propose you this puzzle to solve.

83.....7....53.........6.....2.....75......31..1.2.569.....48....4.61......9.26..

puzzle: Show
Image

my resolution: Show
After reduction of the puzzle by the basic techniques, resolution in two steps (anti-tracks TDP).
1) P'(-3r8c4) : (-3r8c4)->3r7c4->3r9c3->8r5c3->8r6c4->... => -8r8c4 => r8c4=3 et 17 placements
Image
2) P'(-9r8c1) : (-9r8c1)->[ 9r8c8->5r3c8->9r3c3->9r7c1 ]->6r2c1->1r2c2->2r7c2->... => -2r8c1 => r8c1=9, stte.
Image
Image

Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2022-04-02

Postby Cenoman » Sat Apr 02, 2022 8:42 pm

Code: Select all
 +---------------------------+--------------------+---------------------+
 |  8       3        56      |  2      4     9    |  1    7      56     |
 |  12467   12467    67      |  5      3     78   |  9    24     2468   |
 |  2479    24579    579     |  178    178   6    |  3    245    2458   |
 +---------------------------+--------------------+---------------------+
 |  3       69       2       |  16     19    5    |  4    8      7      |
 |  5       46789    6789    |  4678   789   78   |  2    3      1      |
 |  47      478      1       |  478    2     3    |  5    6      9      |
 +---------------------------+--------------------+---------------------+
 |  12679   125679   35679   |  37     57    4    |  8    1259   235    |
 |  29     e2589     4       | d38     6     1    |  7    259   c235    |
 |  17      1578    a357-8   |  9      578   2    |  6    145   b345    |
 +---------------------------+--------------------+---------------------+

1. L2-Wing: (3)r9c3 = r9c9 - r8c9 = (3-8)r8c4 = (8)r8c2 => -8 r9c3; 18 placements & ls

Code: Select all
 +-----------------------+-----------------+-------------------+
 |  8       3      56    |  2    4    9    |  1    7     56    |
 |  12467   1247   67    |  5    3    8    |  9    24    246   |
 |  249     245    59    |  1    7    6    |  3    245   8     |
 +-----------------------+-----------------+-------------------+
 |  3       9      2     |  6    1    5    |  4    8     7     |
 |  5       6      8     |  4    9    7    |  2    3     1     |
 |  47      47     1     |  8    2    3    |  5    6     9     |
 +-----------------------+-----------------+-------------------+
 |  1269    12     369   |  7    5    4    |  8    129   23    |
 |  29      8      4     |  3    6    1    |  7    259   25    |
 |  17      157    357   |  9    8    2    |  6    14    34    |
 +-----------------------+-----------------+-------------------+

2. H-Wing: (1=2)r7c2 - (2=9)r8c1 - r8c8 = (9)r7c8 => - 1r7c8; 9 placements & ls

Code: Select all
 +------------------+-----------------+------------------+
 |  8    3     56   |  2    4    9    |  1    7     56   |
 |  16  b14+2  7    |  5    3    8    |  9    4-2   26   |
 | c29  c24    59   |  1    7    6    |  3  da45+2  8    |
 +------------------+-----------------+------------------+
 |  3    9     2    |  6    1    5    |  4    8     7    |
 |  5    6     8    |  4    9    7    |  2    3     1    |
 |  4    7     1    |  8    2    3    |  5    6     9    |
 +------------------+-----------------+------------------+
 |  16   12    69   |  7    5    4    |  8    9-2   3    |
 |  29   8     4    |  3    6    1    |  7   a59+2  25   |
 |  7    5     3    |  9    8    2    |  6    1     4    |
 +------------------+-----------------+------------------+

3. BUG+3
(2)r38c8 == r2c2 - r3c12 = r3c8 => -2 r27c8; ste
Cenoman
Cenoman
 
Posts: 2974
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2022-04-02

Postby P.O. » Sun Apr 03, 2022 5:25 am

Code: Select all
after singles and intersections:

 8       3       56      2       4       9       1       7       56               
 12467   12467   67      5       3       78      9       24      2468             
 2479    24579   579     178     178     6       3       245     2458             
 3       69      2       16      19      5       4       8       7               
 5       46789  c67+89   4678    789     78      2       3       1               
 47     d47-8    1      d47+8    2       3       5       6       9               
 12679   125679 b-35679 a+37     57      4       8       1259    235             
 29      2589    4      a±3×8    6       1       7       259     235             
 17      1578   b+3578   9       578     2       6       145     345           

 c4n3{r8 r7} - c3n3{r7 r9} - c3n8{r9 r5} - r6n8{c2 c4} => r8c4 <> 8
 singles: ( n8r3c9  n6r5c2  n1r4c5  n9r4c2  n8r6c4  n9r5c5  n4r5c4 n6r4c4  n7r3c5  n1r3c4  n8r2c6  n7r5c6  n8r5c3  n8r8c2 n8r9c5  n5r7c5  n7r7c4  n3r8c4 )
 intersection: r9n5{c2c3} => r9c8 r9c9 <> 5

 8      3      56     2      4      9      1      7     f+56             
 12467 e(24)17 67     5      3      8      9     e(24)  e(24+6)             
 249    245    59     1      7      6      3      245    8               
 3      9      2      6      1      5      4      8      7               
 5      6      8      4      9      7      2      3      1               
c+47   d4+7    1      8      2      3      5      6      9               
 1269  a+1±2   369    7      5      4      8      1×29   ×23             
 ×29    8      4      3      6      1      7      259   g+25             
b1+7    157    357    9      8      2      6      14     34           

 r7c2{n2 n1} - r9c1{n1 n7} - r6c1{n7 n4} - r6c2{n4 n7} - r2{c2c8c9}{n2n4n6} - r1c9{n6 n5} - r8c9{n5 n2} => r7c8 r7c9 r8c1 <> 2
 ste.
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: Robert's puzzles 2022-04-02

Postby denis_berthier » Sun Apr 03, 2022 6:53 am

.
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 8      3      56     ! 2      4      9      ! 1      7      56     !
   ! 12467  12467  67     ! 5      3      78     ! 9      24     2468   !
   ! 2479   24579  579    ! 178    178    6      ! 3      245    2458   !
   +----------------------+----------------------+----------------------+
   ! 3      69     2      ! 16     19     5      ! 4      8      7      !
   ! 5      46789  6789   ! 4678   789    78     ! 2      3      1      !
   ! 47     478    1      ! 478    2      3      ! 5      6      9      !
   +----------------------+----------------------+----------------------+
   ! 12679  125679 35679  ! 37     57     4      ! 8      1259   235    !
   ! 29     2589   4      ! 38     6      1      ! 7      259    235    !
   ! 17     1578   3578   ! 9      578    2      ! 6      145    345    !
   +----------------------+----------------------+----------------------+
141 candidates.


My first step in solving a puzzle is always to check the simplest-first solution and to get its rating:
Code: Select all
x-wing-in-rows: n8{r6 r8}{c2 c4} ==> r9c2≠8, r5c4≠8, r5c2≠8, r3c4≠8
biv-chain[3]: r4c2{n9 n6} - b5n6{r4c4 r5c4} - r5n4{c4 c2} ==> r5c2≠9
biv-chain[3]: r7c4{n7 n3} - b7n3{r7c3 r9c3} - r9n8{c3 c5} ==> r9c5≠7
whip[1]: r9n7{c3 .} ==> r7c1≠7, r7c2≠7, r7c3≠7
biv-chain[3]: r8c4{n3 n8} - b7n8{r8c2 r9c3} - b7n3{r9c3 r7c3} ==> r7c4≠3
singles ==> r7c4=7, r3c4=1, r4c4=6, r4c2=9, r4c5=1, r5c4=4, r6c4=8, r5c6=7, r2c6=8, r3c5=7, r5c2=6, r5c3=8, r5c5=9, r8c4=3, r7c5=5, r9c5=8, r8c2=8, r3c9=8
whip[1]: r8n5{c9 .} ==> r9c8≠5, r9c9≠5
biv-chain[3]: c8n5{r3 r8} - c8n9{r8 r7} - c3n9{r7 r3} ==> r3c3≠5
naked-single ==> r3c3=9
biv-chain[3]: r7n9{c8 c1} - r8c1{n9 n2} - r7c2{n2 n1} ==> r7c8≠1
stte

This is an easy puzzle, not only in W3 but also in BC3.
This means that, when looking for solutions with fewer steps, one has several options to deal with the trade-off between complexity of each step and number of steps:
- allowing longer chains
- allowing more complex types of chains (z-chains, whips...)
- both


For 2-step solutions using only reversible rules, one has to use z-chains[7] - too long chains for such an easy puzzle.
Here is nevertheless one such solution:
Code: Select all
biv-chain[3]: r8n8{c2 c4} - b8n3{r8c4 r7c4} - b7n3{r7c3 r9c3} ==> r9c3≠8
singles ==> r5c3=8, r5c6=7, r2c6=8, r5c5=9, r4c5=1, r3c5=7, r3c4=1, r7c5=5, r9c5=8, r8c4=3, r7c4=7, r4c4=6, r4c2=9, r5c4=4, r5c2=6, r6c4=8, r8c2=8,> r3c9=8
whip[1]: r8n5{c9 .} ==> r9c8≠5, r9c9≠5
z-chain[7]: r8c9{n2 n5} - r1n5{c9 c3} - r3c3{n5 n9} - c1n9{r3 r7} - c1n6{r7 r2} - r2n1{c1 c2} - r7c2{n1 .} ==> r8c1≠2
stte



I prefer a 3-step solution, using only bivalue-chains[≤4]:
Code: Select all
biv-chain[4]: r8n8{c2 c4} - b8n3{r8c4 r7c4} - b7n3{r7c3 r9c3} - c3n8{r9 r5} ==> r6c2≠8, r9c3≠8
singles ==> r5c3=8, r5c6=7, r2c6=8, r5c5=9, r4c5=1, r3c5=7, r3c4=1, r7c5=5, r9c5=8, r8c4=3, r7c4=7, r4c4=6, r4c2=9, r5c4=4, r5c2=6, r6c4=8, r8c2=8, r3c9=8
whip[1]: r8n5{c9 .} ==> r9c8≠5, r9c9≠5

biv-chain[4]: r7c9{n3 n2} - r7c2{n2 n1} - b9n1{r7c8 r9c8} - b9n4{r9c8 r9c9} ==> r9c9≠3
singles ==> r9c9=4, r9c8=1, r9c1=7, r6c1=4, r6c2=7, r9c2=5, r9c3=3, r7c9=3, r2c3=7

biv-chain[4]: r1c3{n5 n6} - r7c3{n6 n9} - b9n9{r7c8 r8c8} - b9n5{r8c8 r8c9} ==> r1c9≠5
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-04-02

Postby DEFISE » Sun Apr 03, 2022 11:42 am

If I don’t use the initial Xwing, my Few-Steps algo (in W3) necessarily goes through the same first 2 eliminations of Cenoman:

Single(s): 9r1c6, 4r4c7, 8r4c8, 2r5c7, 1r1c7, 4r1c5, 2r1c4, 9r2c7, 3r3c7, 7r8c7, 5r4c6, 3r6c6, 3r4c1
Box/Line: 1r2b1 => -1r3c1 -1r3c2
whip[3]: r8n8{c2 c4}- r8n3{c4 c9}- r9n3{c9 .} => -8r9c3
Single(s): 8r5c3, 7r5c6, 8r2c6, 9r5c5, 1r4c5, 7r3c5, 1r3c4, 6r4c4, 9r4c2, 4r5c4, 6r5c2, 8r6c4, 5r7c5, 3r8c4, 7r7c4, 8r9c5, 8r3c9, 8r8c2
Box/Line: 5r8b9 => -5r9c8 -5r9c9
whip[3]: r7c2{n1 n2}- r8c1{n2 n9}- r7n9{c1 .} => -1r7c8
Single(s): 1r9c8, 7r9c1, 4r6c1, 7r6c2, 5r9c2, 3r9c3, 4r9c9, 7r2c3, 3r7c9
whip[3]: r3c3{n9 n5}- c8n5{r3 r8}- r8n9{c8 .} => -9r7c3
STTE
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France

Re: Robert's puzzles 2022-04-02

Postby denis_berthier » Mon Apr 04, 2022 4:57 am

.
Hi François
I wanted to check if my slightly different version of the algorithm had the same compulsory first two steps. The answer is yes, but the end doesn't require the Pair. Moreover, the solution is entirely in BC3:
biv-chain[3]: r8n8{c2 c4} - b8n3{r8c4 r7c4} - b7n3{r7c3 r9c3} ==> r9c3≠8
18 singles
whip[1]: r8n5{c9 .} ==> r9c8≠5, r9c9≠5
biv-chain[3]: r7c2{n1 n2} - r8c1{n2 n9} - b9n9{r8c8 r7c8} ==> r7c8≠1
9 singles
biv-chain[3]: r3c3{n9 n5} - c8n5{r3 r8} - r8n9{c8 c1} ==> r3c1≠9, r7c3≠9
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-04-02

Postby DEFISE » Mon Apr 04, 2022 10:20 am

Hi Denis,
Great !
Note that I decided not to implement z-chains and bivalue-chains.
I will limit myself to the following tools:

Singles, Box/line, subsets (naked, hidden, super-hidden)
whip, g-whip, S2-whip, S3-whip,
braid, g-braid, S2-braid, S3-braid.

François
DEFISE
 
Posts: 280
Joined: 16 April 2020
Location: France


Return to Puzzles