Robert's puzzles 2022-01-24

Post puzzles for others to solve here.

Robert's puzzles 2022-01-24

Postby Mauriès Robert » Mon Jan 24, 2022 9:52 am

Hi all,
I propose you this easier puzzle than the previous one.
I will give my resolution in the thread a little later, addressing myself more particularly to Denis.
Good resolution.
Robert

.2.....3...7.5.2..1..2.6..9.78...35.3..879..4............5.2...24.....85..6.1.9..

puzzle: Show
Image
Mauriès Robert
 
Posts: 606
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2022-01-24

Postby yzfwsf » Mon Jan 24, 2022 10:38 am

Single and Locked Candidates go here
Code: Select all
.-----------------.-------------------.--------------------.
| 4568  2     459 | 1479  489    1478 | 14568  3     168   |
| 468   3689  7   | 1349  5      1348 | 2      146   168   |
| 1     358   345 | 2     348    6    | 4578   47    9     |
:-----------------+-------------------+--------------------:
| 9     7     8   | 146   246    14   | 3      5     126   |
| 3     156   125 | 8     7      9    | 16     126   4     |
| 46    16    124 | 136   236    5    | 1678   9     12678 |
:-----------------+-------------------+--------------------:
| 78    1389  139 | 5     34689  2    | 1467   1467  1367  |
| 2     4     139 | 3679  369    37   | 167    8     5     |
| 578   358   6   | 347   1      3478 | 9      247   237   |
'-----------------'-------------------'--------------------'

Dynamic Contradiction Chain: If r9c2=5 Then r2c2=3 And r2c2<>3 simultaneously,so r9c2<>5
Hidden Text: Show
Chain 20:r3c7=5 → r3c7<>7 → r3c8=7
Chain 19:r1c1=5 → r1c7<>5 → r3c7=5
Chain 18:r9c2=5 → r5c2<>5 → r5c3=5 → r5c3<>2
Chain 17:r3c8=7 → r9c8<>7
Chain 16:r5c3<>2 → r5c8=2 → r9c8<>2
Chain 15:(r9c8<>2+r9c8<>7) → r9c8=4 → r2c8<>4
Chain 14:r2c1=6 → r2c8<>6
Chain 13:r5c3<>2 → r6c3=2 → r6c3<>4 → r6c1=4 → r6c1<>6
Chain 12:r1c1=5 → r1c1<>6
Chain 11:r9c2=5 → r9c1<>5 → r1c1=5
Chain 10:r3c7=5 → r3c7<>4
Chain 9:r3c8=7 → r3c8<>4
Chain 8:(r3c8<>4+r3c7<>4+r2c8<>4) → r1c7=4 → r1c3<>4
Chain 7:r1c1=5 → r1c3<>5
Chain 6:(r1c1<>6+r6c1<>6) → r2c1=6
Chain 5:(r2c8<>6+r2c8<>4) → r2c8=1 → r2c9<>1
Chain 4:r2c1=6 → r2c9<>6
Chain 3:(r2c9<>6+r2c9<>1) → r2c9=8 → r2c2<>8
Chain 2:r2c1=6 → r2c2<>6
Chain 1:(r1c3<>5+r1c3<>4) → r1c3=9 → r2c2<>9
Chain 0:(r2c2<>9+r2c2<>6+r2c2<>8) → r2c2=3
Chain 35:r9c2=5 → r5c2<>5 → r5c3=5 → r5c3<>2 → r5c8=2
Chain 34:r5c8=2 → r6c9<>2
Chain 33:r5c8=2 → r4c9<>2
Chain 32:r9c2=5 → r9c1<>5 → r1c1=5 → r1c7<>5 → r3c7=5 → r3c7<>7 → r3c8=7 → r9c8<>7
Chain 31:r5c8=2 → r9c8<>2
Chain 30:(r9c8<>2+r9c8<>7) → r9c8=4
Chain 29:(r4c9<>2+r6c9<>2) → r9c9=2 → r9c9<>3 → r7c9=3
Chain 28:r7c9=3 → r7c3<>3
Chain 27:r7c9=3 → r7c2<>3
Chain 26:r9c2=5 → r9c2<>3
Chain 25:r9c8=4 → r7c8<>4
Chain 24:r9c8=4 → r7c7<>4
Chain 23:(r7c7<>4+r7c8<>4) → r7c5=4 → r7c5<>8 → r9c6=8 → r9c6<>3
Chain 22:(r9c2<>3+r7c2<>3+r7c3<>3) → r8c3=3 → r8c6<>3
Chain 21:(r8c6<>3+r9c6<>3) → r2c6=3 → r2c2<>3

Single and Locked Candidates
Code: Select all
.----------------.-------------------.-------------------.
| 468  2     459 | 1479  489    1478 | 14568  3    168   |
| 468  369   7   | 1349  5      1348 | 2      146  168   |
| 1    35    345 | 2     348    6    | 4578   47   9     |
:----------------+-------------------+-------------------:
| 9    7     8   | 146   246    14   | 3      5    126   |
| 3    156   125 | 8     7      9    | 16     126  4     |
| 46   16    124 | 136   236    5    | 1678   9    12678 |
:----------------+-------------------+-------------------:
| 7    1389  139 | 5     34689  2    | 146    146  136   |
| 2    4     139 | 3679  369    37   | 167    8    5     |
| 5    38    6   | 347   1      3478 | 9      247  237   |
'----------------'-------------------'-------------------'

Region Forcing Chain: Each 3 in c5 true in turn will all lead to: r7c5<>8
Hidden Text: Show
3r3c5 - (3=5)r3c2 - (5=162)r5c278 - (2=168)r124c9 - 8r3c7 = 8r3c5
(3-2)r6c5 = 2r4c5 - (2=168)r124c9 - 8r3c7 = 8r3c5
3r7c5
3r8c5 - (3=478)b8p679

stte
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: Robert's puzzles 2022-01-24

Postby denis_berthier » Mon Jan 24, 2022 11:33 am

Mauriès Robert wrote:I will give my resolution in the thread a little later, addressing myself more particularly to Denis.
.2.....3...7.5.2..1..2.6..9.78...35.3..879..4............5.2...24.....85..6.1.9..


Thanks for the particular attention. But, IMO, you'd better spend time answering my question about what a TR is here: http://forum.enjoysudoku.com/is-there-any-original-theory-or-any-theory-at-all-in-tdp-t39766.html. Your whole TDP theory is on the verge of crumbling down.

SER = 9.0

Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 4568  2     459   ! 1479  489   1478  ! 14568 3     168   !
   ! 468   3689  7     ! 1349  5     1348  ! 2     146   168   !
   ! 1     358   345   ! 2     348   6     ! 4578  47    9     !
   +-------------------+-------------------+-------------------+
   ! 9     7     8     ! 146   246   14    ! 3     5     126   !
   ! 3     156   125   ! 8     7     9     ! 16    126   4     !
   ! 46    16    124   ! 136   236   5     ! 1678  9     12678 !
   +-------------------+-------------------+-------------------+
   ! 78    1389  139   ! 5     34689 2     ! 1467  1467  1367  !
   ! 2     4     139   ! 3679  369   37    ! 167   8     5     !
   ! 578   358   6     ! 347   1     3478  ! 9     247   237   !
   +-------------------+-------------------+-------------------+
166 candidates


Single-step solution with tracks in the form of Forcing-TE
Code: Select all
FORCING[3]-T&E(W1) applied to trivalue candidates n3r9c2, n5r9c2 and n8r9c2 :
===> 8 values decided in the three cases: n3r7c9 n2r4c5 n4r6c1 n9r1c5 n9r8c4 n7r3c8 n6r8c5 n3r6c5
===> 62 candidates eliminated in the three cases: n4r1c1 n5r1c3 n9r1c3 n4r1c4 n9r1c4 n4r1c5 n8r1c5 n4r1c6 n8r1c6 n1r1c7 n6r1c7 n8r1c7 n1r1c9 n4r2c1 n3r2c2 n1r2c4 n9r2c4 n1r2c6 n6r2c9 n8r2c9 n8r3c2 n3r3c5 n7r3c7 n4r3c8 n4r4c5 n6r4c5 n2r4c9 n1r5c3 n6r5c8 n6r6c1 n4r6c3 n3r6c4 n2r6c5 n6r6c5 n1r6c7 n6r6c7 n1r6c9 n2r6c9 n6r6c9 n3r7c2 n3r7c3 n3r7c5 n6r7c5 n9r7c5 n1r7c7 n4r7c8 n7r7c8 n1r7c9 n6r7c9 n7r7c9 n9r8c3 n3r8c4 n6r8c4 n7r8c4 n3r8c5 n9r8c5 n6r8c7 n8r9c1 n4r9c6 n7r9c6 n7r9c8 n3r9c9
stte


Of course, this is not the best way of solving in SudoRules (there's a solution in W8).
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-01-24

Postby P.O. » Mon Jan 24, 2022 3:57 pm

Code: Select all
after singles and intersections and a hidden pair: r6{c7c9}{n7n8} => r6c7 r6c9 <> 1,2,6

4568   2      459    1479   489    1478   14568  3      168             
468    3689   7      1349   5      1348   2      146    168             
1      358    345    2      348    6      4578   47     9               
9      7      8      146    246    14     3      5      126             
3      156    125    8      7      9      16     126    4               
46     16     124    136    236    5      78     9      78             
78     1389   139    5      34689  2      1467   146×7  3×(167)   
2      4      139    3679   369    37     167    8      5               
578    358    6      347    1      3478   9      247    237             

c9n3{r7 r9} - c9n2{r9 r4} - r5n2{c8 c3} - r5n5{c3 c2} - r9c2{n3n5 n8} - b8n8{r9c6 r7c5} - r3n8{c5 c7} - c9{r1r2}{n1n6} => r7c9 <> 1,6
c1n7{r7 r9} - r9n5{c1 c2} - r5{c2c7c8}{n1n2n6} - r9c8{n2n7 n4} - c7{r5r7r8}{n1n6n7} => r7c8 r7c9 <> 7
single: ( r7c9b9 n3 )

4×568  2      459    1479   489    1478   14568  3      168             
468    3689   7      1349   5      1348   2      146    168             
1      358    345    2      348    6      4578   47     9               
9      7      8      146    246    14     3      5      126             
3      156    125    8      7      9      16     126    4               
46     16     124    136    ×236   5      78     9      78             
78     189    19     5      4689   2      1467   146    3               
2      4      139    3679   369    37     167    8      5               
578    358    6      347    1      3478   9      247    27   

c3n2{r6 r5} - r5n5{c3 c2} - r9n5{c2 c1} - c1n7{r9 r7} - c1n8{r7 r1r2} - r3c2{n5n8 n3} - c3n3{r3 r8} - c5n3{r8 r6} => r6c5 <> 2
r9n5{r1 r2} - b7n3{r9c2 r8c3} - r8n1{c3 c7} - r5c7{n1 n6} - r5c2{n5n6 n1} - b6n1{r5c8 r4c9} - r4{c4c6}{n4n6} - r8{c4c6}{n7n9} - c5n9{c7c8 c1} - c3{r1r3}{n4n5} => r1c1 <> 5
singles + 2 intersections.
ste.
P.O.
 
Posts: 1763
Joined: 07 June 2021

Re: Robert's puzzles 2022-01-24

Postby DEFISE » Mon Jan 24, 2022 5:40 pm

Solution 1
Hidden Text: Show
Single(s): 9r4c1, 9r6c8, 5r6c6
Box/Line: 7r3b3 => -7r1c7 -7r1c9
Box/Line: 4r4b5 => -4r6c4 -4r6c5
Hidden pairs: 78r6c79 => -1r6c7 -6r6c7 -1r6c9 -2r6c9 -6r6c9
Code: Select all
|-----------------------------------------------------------|
| 4568  2     459   | 1479  489   1478  | 14568 3     168   |
| 468   3689  7     | 1349  5     1348  | 2     146   168   |
| 1     358   345   | 2     348   6     | 4578  47    9     |
|-----------------------------------------------------------|
| 9     7     8     | 146   246   14    | 3     5     126   |
| 3     156   125   | 8     7     9     | 16    126   4     |
| 46    16    124   | 136   236   5     | 78    9     78    |
|-----------------------------------------------------------|
| 78    1389  139   | 5     34689 2     | 1467  1467  1367  |
| 2     4     139   | 3679  369   37    | 167   8     5     |
| 578   358   6     | 347   1     3478  | 9     247   237   |
|-----------------------------------------------------------|


whip[9]: r9n2{c9 c8}- r5n2{c8 c3}- r5n5{c3 c2}- r9c2{n5 n8}- r7c1{n8 n7}- r7n8{c1 c5}- r3n8{c5 c7}- r6c7{n8 n7}- c9n7{r6 .}
=> -3r9c9
Single(s): 3r7c9

whip[8]: r6c2{n6 n1}- c2n6{r6 r2}- c2n9{r2 r7}- r7c3{n9 n1}- r8c3{n1 n3}- b1n3{r3c3 r3c2}- c5n3{r3 r6}- r6c4{n3 .} => -6r6c1
Single(s): 4r6c1
Box/Line: 6c1b1 => -6r2c2

whip[6]: r6c3{n2 n1}- r7c3{n1 n9}- r8c3{n9 n3}- c5n3{r8 r3}- r2n3{c4 c2}- c2n9{r2 .} => -2r6c5
Single(s): 2r6c3, 2r5c8, 2r4c5, 2r9c9, 7r6c9, 8r6c7
Naked pairs: 47c8r39 => -4r2c8 -4r7c8 -7r7c8
Box/Line: 4r2b2 => -4r1c4 -4r1c5 -4r1c6 -4r3c5
Single(s): 4r7c5, 4r9c8, 7r3c8, 8r9c6
Code: Select all
|--------------------------------------------------|
| 568  2    459  | 179  89   17   | 1456 3    168  |
| 68   389  7    | 1349 5    134  | 2    16   168  |
| 1    358  345  | 2    38   6    | 45   7    9    |
|--------------------------------------------------|
| 9    7    8    | 146  2    14   | 3    5    16   |
| 3    156  15   | 8    7    9    | 16   2    4    |
| 4    16   2    | 136  36   5    | 8    9    7    |
|--------------------------------------------------|
| 78   189  19   | 5    4    2    | 167  16   3    |
| 2    4    139  | 3679 369  37   | 167  8    5    |
| 57   35   6    | 37   1    8    | 9    4    2    |
|--------------------------------------------------|


whip[3]: r3c5{n8 n3}- c3n3{r3 r8}- c6n3{r8 .} => -8r1c5
STTE


Solution 2
Hidden Text: Show
Single(s): 9r4c1, 9r6c8, 5r6c6
Box/Line: 7r3b3 => -7r1c7 -7r1c9
Box/Line: 4r4b5 => -4r6c4 -4r6c5
Hidden pairs: 78r6c79 => -1r6c7 -6r6c7 -1r6c9 -2r6c9 -6r6c9

whip[9]: r9n2{c9 c8}- r5n2{c8 c3}- r5n5{c3 c2}- r9c2{n5 n8}- r7c1{n8 n7}- r7n8{c1 c5}- r3n8{c5 c7}- r6c7{n8 n7}- c9n7{r6 .} => -3r9c9
Single(s): 3r7c9

whip[8]: r2n3{c4 c2}- c2n9{r2 r7}- r7c3{n9 n1}- b9n1{r7c7 r8c7}- r5c7{n1 n6}- c2n6{r5 r6}- r6n1{c2 c4}- r6n3{c4 .} => -3r3c5
Box/Line: 3r3b1 => -3r2c2

whip[8]: c5n3{r6 r8}- b7n3{r8c3 r9c2}- r9n5{c2 c1}- c1n7{r9 r7}- b7n8{r7c1 r7c2}- r3c2{n8 n5}- c3n5{r1 r5}- c3n2{r5 .} => -2r6c5
Single(s): 2r6c3, 2r5c8, 2r4c5, 4r6c1, 2r9c9, 7r6c9, 8r6c7
Box/Line: 6c1b1 => -6r2c2
Naked pairs: 47c8r39 => -4r2c8 -4r7c8 -7r7c8
Box/Line: 4r2b2 => -4r1c4 -4r1c5 -4r1c6 -4r3c5
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: Robert's puzzles 2022-01-24

Postby eleven » Mon Jan 24, 2022 10:31 pm

Could not find less complex chains, which would progress the puzzle. I reused a part in the second chain.
Normally i don't solve such puzzles, where i don't find anything interesting, but i'm curious to compare, how Robert did it.
Code: Select all
+-----------------------+----------------------+----------------------+
| c4568   2      459    | 1479   489    1478   | 14568  3      168    |
| c468  ig3689   7      |h1349   5     h1348   | 2      146    168    |
|  1    jd358    345    | 2      348    6      | 4578   47     9      |
+-----------------------+----------------------+----------------------+
|  9      7      8      | 146    246    14     | 3      5      126    |
|  3    ba16+5   125    | 8      7      9      | 16     126    4      |
| b46   ba16     124    |*136    236    5      | 78     9      78     |
+-----------------------+----------------------+----------------------+
| e78    e1389   139    | 5     f34689  2      | 1467   1467   1367   |
|  2      4      139    | 3679   369   g37     | 167    8      5      |
| b578  jd358    6      |g347    1     g3478   | 9      247    237    |
+-----------------------+----------------------+----------------------+

6r45c2 = [5r5c2-r9c2=5r9c1] & 61*3r6c124 - [(5=38)r39c2 & (5|6=48)r12c1] - 8r7c12 = 8r7c5 - (8r9c6|*3r9c4) = (347r89c6 & 47r9c4) - 3r2c*46 = 3r2c2 - (3=58r39c2) - (5=16)r45c2 => -6r6c1
Code: Select all
 *-----------------------------------------------------------------------*
 |  568   2      459   |  1479   489     1478   |  14568   3      168    |
 |  68   i389    7     | h1349   5      h1348   |  2       146    168    |
 |  1    d358    345   |  2      348     6      |  4578    47     9      |
 |---------------------+------------------------+------------------------|
 |  9     7      8     |  146   a246     14     |  3       5      126    |
 |  3    b156   b125   |  8      7       9      |  16      126    4      |
 |  4     16     12    | *136   b236     5      |  78      9      78     |
 |---------------------+------------------------+------------------------|
 |  78   e1389   139   |  5     f34689   2      |  1467    1467   1367   |
 |  2     4      139   |  3679   369    g37     |  167     8      5      |
 |  578  d358    6     | g347    1      g3478   |  9       247    237    |
 *-----------------------------------------------------------------------*

2r4c5 = 2*3r6c56 & 25r5c32 - (5=38)r39c2 - 8r7c2 = 8r7c5 - (8r9c6|*3r9c4) = (347r89c6 & 47r9c4) - 3r2c*46 = 3r2c2 - (3=58r39c2) - 5r5c2 = (5-2)r5c3 = 2r5c4 => -2r6c5
basics ..
Code: Select all
 *-----------------------------------------------------------*
 |  568   2     459   |  17    9-8  17   |  45    3   a68    |
 |  68    39    7     |  349   5   c34   |  2     16   168   |
 |  1     358   345   |  2    d38   6    |  45    7    9     |
 |--------------------+------------------+-------------------|
 |  9     7     8     |  146   2   c14   |  3     5   b16    |
 |  3     156   15    |  8     7    9    |  16    2    4     |
 |  4     16    2     |  136   36   5    |  8     9    7     |
 |--------------------+------------------+-------------------|
 |  78    189   19    |  5     4    2    |  167   16   3     |
 |  2     4     13    |  69    69   37   |  17    8    5     |
 |  57    35    6     |  37    1    8    |  9     4    2     |
 *-----------------------------------------------------------*

(8=6)r1c9 - (6=1)r4c9 - (1=43)r42c6 - (3=8)r3c5 => -8r1c5
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Robert's puzzles 2022-01-24

Postby Mauriès Robert » Mon Jan 24, 2022 11:16 pm

Hi all,
As I said, here is my resolution presented in several ways for Denis, hoping that he will understand how TDP can be declined and that it has nothing to do with copying his techniques.

1) We can solve with a minimum of steps by looking for invalid tracks, as follows.
I specify that here the chaining is written with a memory effect, i.e. ->A indicates that the positioning of A depends on that of the previous candidates ->.

P(2r5C3) : 2r5c3->5r5c2->5r9c1->7r7c1->3r3c2->8r9c2->8r7c5->8r3c7->7r6c7->7r3c8->7r9c9->3r7c9->2r4c9->2r6c5->3r6c4->3r2c6->3r8c5->... => contradiction (no 3 possible in B7) => r6c3=6 + basic techniques (TB).
puzzle: Show
Image


P(6r6c2) : 6r6c2->3r6c5->1r6c4->1r4c9->1r2c8->1r1c6->7r1c4->7r9c1->8r7c1->8r3c5->9r1c5->9r2c2->... = > contradiction (no 8 possible in B1) => r6c2=1 and end with TB (singles).
puzzle: Show
Image

This method of solving is what Denis calls T&E. I only use it to determine the difficulty level of the puzzle, which I call the TDP level.
This kind of resolution has earned me criticism on this forum, which has led me to avoid it.

2) One can also solve by using conjugate tracks. This is what I sometimes do to explain to my readers how to solve in several steps that do not necessarily involve searching for invalid leads. For example, for a first step :
P(2r5c3) : 2r5c3->5r5c2->5r9c1->7r7c1->3r3c2->8r9c2->8r7c5->8r3c7->7r3c8->7r6c7->7r9c9->3r7c9->...
P(2r6c3) : 2r6c3->2r4c5->2r9c9->3r7c9->...
=> r7c9=3
The property used here is that any common candidate of two conjugate tracks is a solution of its cell.
puzzle: Show
Image


But I could also have used P(2r9c9) and P(2r9c8) which are conjugate tracks, like this:
P(2r9c9) : 2r9c9->2r5c8->2r6c3->4r6c1->...
P(2r9c8) : 2r9c8->2r5c3->5r5c2->5r9c1->7r7c1->3r3c2->8r9c2->8r7c5->8r3c7->7r6c7->7r9c9->...
=> r9c9≠3 => r7c9=3.
The property used here is that any candidate who sees both a candidate from each of the conjugate tracks can be eliminated.
puzzle: Show
Image


But I could have also, considered P(2r9c8) as the anti-track P'(2r9c9) to eliminate 3r9c9 as I usually do on this forum since 3r9c9 sees both 2r9c9 and a candidate of P'(2r9c9), developing only the anti-track.
puzzle: Show
Image

Etc, etc ...

3) Here is the end of my resolution of all the resolutions I could make, after placing 3r7c9.
P'(5r5c3) : (-5r5c3) => [5r5c2->5r9c1->7r7c1->8r79c2]->3r3c2->3r8c3->3r6c5->2r6c3->.... => -2r5c3 => 2r6c3 +TB.
puzzle: Show
Image

P'(8r3c5) : (-8r3c5) => 3r3c5->3r6c4->7r9c4->7r7c1->8r7c2->... => -8r3c2 => r3c5=8 , stte.
puzzle: Show
Image

But I can also find this result with two conjugate tracks :
P(8r3c5) : [8r3c5->9r3c5-> 9r2c2]->8r7c2->...
P(3r3c5) : 3r3c5->3r6c4->7r9c4->7r7c1->8r7c2->...
=> r7c2=8 =>r2c5=8, stte
puzzle: Show
Image

This example shows that when I study a puzzle I find different ways of solving it with TDP, but in the end, when it comes to presenting one, I only retain the simplest one and not because I have copied anyone else.
Robert
Mauriès Robert
 
Posts: 606
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2022-01-24

Postby denis_berthier » Tue Jan 25, 2022 3:40 am

.
That's really great news: a puzzle can be solved in several different ways.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-01-24

Postby denis_berthier » Tue Jan 25, 2022 4:48 am

.
I've already given a 1-step solution with Forcing[3]-T&E(W1). Here is now a solution in 3 steps, using conjugated tracks.
I dont't know if 2 steps would be enough; that's not my point. My point is to show how tracks and conjugated tracks really look like if you stick to their definition: a track is the set... (i.e.in particular, it is not a sequence)

This is the full SudoRules output of Forcing-T&E(W1).
To read it as conjugated tracks, replace "49 values decided by n5r5c2" by "T(n5r5c2)" and so on.
Notice that SudoRules gives the strict content of the relevant various tracks, according to Robert's definition.
I have nevertheless also kept all the additional information about all the assertions and eliminations common to each pair of conjugated tracks.

Staring from the resolution state after whips[1]
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 4568  2     459   ! 1479  489   1478  ! 14568 3     168   !
   ! 468   3689  7     ! 1349  5     1348  ! 2     146   168   !
   ! 1     358   345   ! 2     348   6     ! 4578  47    9     !
   +-------------------+-------------------+-------------------+
   ! 9     7     8     ! 146   246   14    ! 3     5     126   !
   ! 3     156   125   ! 8     7     9     ! 16    126   4     !
   ! 46    16    124   ! 136   236   5     ! 1678  9     12678 !
   +-------------------+-------------------+-------------------+
   ! 78    1389  139   ! 5     34689 2     ! 1467  1467  1367  !
   ! 2     4     139   ! 3679  369   37    ! 167   8     5     !
   ! 578   358   6     ! 347   1     3478  ! 9     247   237   !
   +-------------------+-------------------+-------------------+
166 candidates

I'm using TB = W1.

FORCING-T&E(W1) applied to bivalue candidates n5r5c2 and n5r5c3 :
.... 49 values decided by n5r5c2 : n5r5c2 n5r9c1 n7r7c1 n3r3c2 n8r9c2 n8r7c5 n4r3c5 n7r3c8 n5r3c3 n8r3c7 n9r1c5 n4r1c3 n4r6c1 n6r6c2 n9r2c2 n1r7c2 n1r8c7 n7r6c7 n6r5c7 n4r7c7 n2r9c8 n1r5c8 n2r5c3 n1r6c3 n3r6c4 n2r6c5 n8r6c9 n6r4c5 n3r8c5 n7r8c6 n4r9c6 n1r4c6 n4r4c4 n8r1c6 n3r2c6 n6r1c1 n8r2c1 n1r1c9 n6r2c9 n3r7c9 n7r9c9 n9r7c3 n4r2c8 n7r1c4 n1r2c4 n2r4c9 n6r7c8 n5r1c7 n9r8c4
.... 9 values decided by n5r5c3 : n5r5c3 n2r5c8 n2r9c9 n3r7c9 n7r6c9 n8r6c7 n2r4c5 n2r6c3 n4r6c1
===> 2 values decided in both cases: n4r6c1 n3r7c9
===> 22 candidates eliminated in both cases: n4r1c1 n5r1c3 n8r1c7 n4r2c1 n6r2c2 n4r4c5 n1r5c3 n6r5c8 n6r6c1 n4r6c3 n1r6c7 n6r6c7 n1r6c9 n2r6c9 n6r6c9 n3r7c2 n3r7c3 n3r7c5 n1r7c9 n6r7c9 n7r7c9 n3r9c9
Code: Select all
CURRENT RESOLUTION STATE:
   568       2         49        1479      489       1478      1456      3         168       
   68        389       7         1349      5         1348      2         146       168       
   1         358       345       2         348       6         4578      47        9         
   9         7         8         146       26        14        3         5         126       
   3         156       25        8         7         9         16        12        4         
   4         16        12        136       236       5         78        9         78       
   78        189       19        5         4689      2         1467      1467      3         
   2         4         139       3679      369       37        167       8         5         
   578       358       6         347       1         3478      9         247       27


FORCING-T&E(W1) applied to bivalue candidates n5r3c3 and n5r5c3 :
.... 41 values decided by n5r3c3 : n5r3c3 n2r5c3 n1r6c3 n9r7c3 n3r8c3 n7r8c6 n4r1c3 n6r6c2 n3r6c4 n4r9c4 n2r6c5 n6r4c5 n9r8c5 n6r8c4 n1r8c7 n6r5c7 n5r1c7 n8r1c5 n1r1c6 n4r4c6 n3r2c6 n8r9c6 n5r9c2 n7r9c1 n2r9c9 n1r4c9 n8r7c1 n1r7c2 n6r2c1 n8r2c9 n7r6c9 n8r6c7 n9r2c2 n4r3c5 n7r3c8 n6r1c9 n7r1c4 n1r2c8 n4r7c8 n7r7c7 n3r3c2
.... 7 values decided by n5r5c3 : n5r5c3 n2r5c8 n2r9c9 n7r6c9 n8r6c7 n2r4c5 n2r6c3
===> 3 values decided in both cases: n2r9c9 n7r6c9 n8r6c7
===> 8 candidates eliminated in both cases: n8r3c7 n2r4c9 n5r5c2 n1r5c8 n7r6c7 n8r6c9 n2r9c8 n7r9c9

Code: Select all
CURRENT RESOLUTION STATE:
   568       2         49        1479      489       1478      1456      3         168       
   68        389       7         1349      5         1348      2         146       168       
   1         358       345       2         348       6         457       47        9         
   9         7         8         146       26        14        3         5         16       
   3         16        25        8         7         9         16        2         4         
   4         16        12        136       236       5         8         9         7         
   78        189       19        5         4689      2         1467      1467      3         
   2         4         139       3679      369       37        167       8         5         
   578       358       6         347       1         3478      9         47        2


naked-single ==> r5c8=2
naked-single ==> r5c3=5
hidden-single-in-a-block ==> r6c3=2
hidden-single-in-a-block ==> r4c5=2
whip[1]: c3n1{r8 .} ==> r7c2≠1

FORCING-T&E(W1) applied to bivalue candidates n6r1c1 and n6r2c1 :
.... 42 values decided by n6r1c1 : n6r1c1 n8r2c1 n7r7c1 n5r9c1 n5r1c7 n5r3c2 n8r1c9 n8r3c5 n8r9c6 n3r9c2 n9r2c2 n8r7c2 n4r1c3 n3r3c3 n9r1c5 n9r8c4 n1r8c3 n9r7c3 n4r7c5 n7r9c4 n4r9c8 n7r3c8 n4r3c7 n3r8c6 n6r8c5 n7r8c7 n3r6c5 n1r1c4 n6r6c4 n1r6c2 n6r5c2 n1r5c7 n6r7c7 n1r7c8 n6r2c8 n1r2c9 n6r4c9 n4r4c4 n1r4c6 n3r2c4 n4r2c6 n7r1c6
.... 40 values decided by n6r2c1 : n6r2c1 n6r7c8 n1r2c8 n8r2c9 n6r1c9 n1r4c9 n6r5c7 n1r5c2 n6r6c2 n3r6c5 n1r6c4 n4r4c6 n6r4c4 n3r2c6 n7r8c6 n8r9c6 n1r1c6 n1r8c7 n9r2c2 n8r7c2 n7r7c1 n5r9c1 n3r9c2 n4r9c4 n7r9c8 n4r3c8 n8r3c5 n3r3c3 n5r1c7 n7r3c7 n9r7c5 n6r8c5 n3r8c4 n1r7c3 n4r1c5 n9r8c3 n5r3c2 n8r1c1 n4r7c7 n9r1c4
===> 12 values decided in both cases: n7r7c1 n5r9c1 n5r1c7 n5r3c2 n8r3c5 n8r9c6 n3r9c2 n9r2c2 n8r7c2 n3r3c3 n6r8c5 n3r6c5
===> 51 candidates eliminated in both cases: n5r1c1 n9r1c3 n4r1c4 n7r1c4 n8r1c5 n4r1c6 n8r1c6 n1r1c7 n4r1c7 n6r1c7 n1r1c9 n3r2c2 n8r2c2 n1r2c4 n4r2c4 n9r2c4 n1r2c6 n8r2c6 n4r2c8 n6r2c9 n3r3c2 n8r3c2 n4r3c3 n3r3c5 n4r3c5 n5r3c7 n1r4c4 n3r6c4 n6r6c5 n8r7c1 n9r7c2 n6r7c5 n8r7c5 n1r7c7 n7r7c7 n4r7c8 n7r7c8 n3r8c3 n6r8c4 n7r8c4 n3r8c5 n9r8c5 n6r8c7 n7r9c1 n8r9c1 n5r9c2 n8r9c2 n3r9c4 n3r9c6 n4r9c6 n7r9c6

Code: Select all
CURRENT RESOLUTION STATE:
   68        2         4         19        49        17        5         3         68       
   68        9         7         3         5         34        2         16        18       
   1         5         3         2         8         6         47        47        9         
   9         7         8         46        2         14        3         5         16       
   3         16        5         8         7         9         16        2         4         
   4         16        2         16        3         5         8         9         7         
   7         8         19        5         49        2         46        16        3         
   2         4         19        39        6         37        17        8         5         
   5         3         6         47        1         8         9         47        2

stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-01-24

Postby Mauriès Robert » Tue Jan 25, 2022 7:44 am

denis_berthier wrote:.
That's really great news: a puzzle can be solved in several different ways.

No, you learn that TDP does not come in one form and that I did not need you and your theory for that contrary to what you imply on the forum.
But with your twisted mind you always make a mockery of what others write, which by dint of repetition only discredits your words and writings.
Robert
Mauriès Robert
 
Posts: 606
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2022-01-24

Postby denis_berthier » Tue Jan 25, 2022 8:18 am

Mauriès Robert wrote:
denis_berthier wrote:.That's really great news: a puzzle can be solved in several different ways.

No, you learn that TDP does not come in one form and that I did not need you and your theory for that contrary to what you imply on the forum.

You claim that your initial inspiration for tracks was SE dynamic contradiction chains (or some other SE chain, I can't remember). I'm not debating this. What I said is, you obviously had other sources of "inspiration".

Wrt this puzzle, what I see here is, conjugated tracks, strictly used as per your definition (a track is a set of...), are Forcing-T&E (or forcing dynamic chains deprived of any chain or network structure, if you prefer this reference). Or would you claim that my solution doesn't strictly qualify as one with conjugated tracks? In this case, can you tell me what's missing?

Mauriès Robert wrote:But with your twisted mind ....

With my twisted mind (thanks for the compliment; I don't like very much too flat minds), I'm debunking the useless or false stuff in your TDP theory (see here: http://forum.enjoysudoku.com/is-there-any-original-theory-or-any-theory-at-all-in-tdp-t39766.html). You're welcome to provide input (if you can stick to technical arguments).
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-01-24

Postby Mauriès Robert » Tue Jan 25, 2022 10:06 am

denis_berthier wrote:... Or would you claim that my solution doesn't strictly qualify as one with conjugated tracks? In this case, can you tell me what's missing?

Hi Denis,
In order to answer you, you must first give me the definition of "FORCING-T&E(W1) applied to bivalue candidates ". Because if I understand what T&E(TB) is, I don't know what T&E(W1) is.
Robert
Mauriès Robert
 
Posts: 606
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2022-01-24

Postby denis_berthier » Tue Jan 25, 2022 11:13 am

Mauriès Robert wrote:
denis_berthier wrote:... Or would you claim that my solution doesn't strictly qualify as one with conjugated tracks? In this case, can you tell me what's missing?

In order to answer you, you must first give me the definition of "FORCING-T&E(W1) applied to bivalue candidates ". Because if I understand what T&E(TB) is, I don't know what T&E(W1) is.

Take TB = W1
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2022-01-24

Postby Mauriès Robert » Tue Jan 25, 2022 1:18 pm

Hi Denis,
Yes, it is indeed conjugated tracks that you have used in 3 successive steps. You present it as sets, which is in accordance with my definition, but in a different way.
When I started on this forum, I was reproached for this type of presentation, which I therefore abandoned in favour of a sequential presentation A->B->C->.... (see the first part of my resolution).
Robert
Mauriès Robert
 
Posts: 606
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2022-01-24

Postby denis_berthier » Tue Jan 25, 2022 4:10 pm

Mauriès Robert wrote:Yes, it is indeed conjugated tracks that you have used in 3 successive steps. You present it as sets, which is in accordance with my definition

Thanks; that's all I wanted you to admit. Conjugated tracks are Forcing-T&E
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Next

Return to Puzzles