I propose you this rather simple puzzle, to see the original resolutions that will be proposed.
Cordialy
Robert
......2..4725......9.1..8..8..2.9.6....4.1....1.8.6..7..6..4.5......5698..3......
puzzle: Show
 +---------------------+--------------------+----------------------+
 |  1      36     8    |  679   469    37   |  2      34    5      | 
 |  4      7      2    |  5     68    b38   | c139   c13   d1369   | 
 |  36     9      5    |  1     46     2    |  8      7     346    | 
 +---------------------+--------------------+----------------------+
 |  8      35     47   |  2     357    9    |  1345   6     134    | 
 |  2356   2356   79   |  4     357    1    |  359    8    e239    | 
 |  35-2   1      49   |  8     35     6    |  3459  e234   7      | 
 +---------------------+--------------------+----------------------+
 | a29     28     6    | a79    189    4    |  137    5     123    | 
 |  7      4      1    |  3     2      5    |  6      9     8      | 
 |  259    258    3    |  679   1689  b78   |  147    124   124    | 
 +---------------------+--------------------+----------------------+ +-----------------+------------------+-------------------+
 |  1    6    8    |  79   49    37   |  2     34   5     | 
 |  4    7    2    |  5    68    38   | d9-1   13  c169   | 
 |  3    9    5    |  1    46    2    |  8     7    46    | 
 +-----------------+------------------+-------------------+
 |  8    3    47*  |  2    57*   9    | a145*  6    14    | 
 |  6    2    79*  |  4    57*   1    |  359*  8   b39    | 
 |  5    1    49*  |  8    3     6    |  49*   2    7     | 
 +-----------------+------------------+-------------------+
 |  29   8    6    |  79   19    4    |  137   5    123   | 
 |  7    4    1    |  3    2     5    |  6     9    8     | 
 |  29   5    3    |  6    189   78   |  147   14   124   | 
 +-----------------+------------------+-------------------+ +---------------------+--------------------+----------------------+
 |  1      36     8    |  679   469    37   |  2      34    5      | 
 |  4      7      2    |  5     68   Ee38   |Ff139  Ff13    136-9  | 
 |  36     9      5    |  1     46     2    |  8      7     346    | 
 +---------------------+--------------------+----------------------+
 |  8      35     47   |  2     357    9    |  1345   6     134    | 
 |  2356   2356   79   |  4     357    1    |  359    8   Aa239z   | 
 | c235    1      49   |  8     35     6    |  3459  b234   7      | 
 +---------------------+--------------------+----------------------+
 | d29     28     6    |Dd79    189    4    | C137    5    B123    | 
 |  7      4      1    |  3     2      5    |  6      9     8      | 
 |  259    258    3    |  679   1689 Ee78   |  147    124   124    | 
 +---------------------+--------------------+----------------------+Mauriès Robert wrote:......2..4725......9.1..8..8..2.9.6....4.1....1.8.6..7..6..4.5......5698..3......
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = TyBC+SFin
***  Using CLIPS 6.32-r773
***********************************************************************************************
singles ==> r3c3 = 5, r5c8 = 8, r1c9 = 5, r1c3 = 8, r1c1 = 1, r8c3 = 1, r8c2 = 4
160 candidates, 807 csp-links and 807 links. Density = 6.34%
whip[1]: c7n7{r9 .} ==> r9c8 ≠ 7
whip[1]: r8n3{c5 .} ==> r7c5 ≠ 3, r7c4 ≠ 3
whip[1]: c3n9{r6 .} ==> r6c1 ≠ 9, r5c1 ≠ 9
whip[1]: c3n7{r5 .} ==> r5c1 ≠ 7
whip[1]: c6n3{r3 .} ==> r3c5 ≠ 3, r1c4 ≠ 3, r1c5 ≠ 3, r2c5 ≠ 3
hidden-single-in-a-column ==> r8c4 = 3
whip[1]: r1n9{c5 .} ==> r2c5 ≠ 9
whip[1]: b5n7{r5c5 .} ==> r9c5 ≠ 7, r1c5 ≠ 7, r3c5 ≠ 7, r7c5 ≠ 7, r8c5 ≠ 7
singles ==> r8c5 = 2,  r8c1 = 7, r3c6 = 2, r3c8 = 7
finned-swordfish-in-columns: n3{c6 c8 c2}{r1 r2 r6} ==> r6c1 ≠ 3
hidden-pairs-in-a-column: c1{n3 n6}{r3 r5} ==> r5c1 ≠ 5, r5c1 ≠ 2
finned-x-wing-in-columns: n2{c8 c1}{r6 r9} ==> r9c2 ≠ 2
biv-chain-rc[4]: r1c6{n3 n7} - r9c6{n7 n8} - r9c2{n8 n5} - r4c2{n5 n3} ==> r1c2 ≠ 3
singles ==> r1c2 = 6, r3c1 = 3, r5c1 = 6, r9c4 = 6
biv-chain-rc[4]: r7c2{n8 n2} - r7c1{n2 n9} - r7c4{n9 n7} - r9c6{n7 n8} ==> r9c2 ≠ 8, r7c5 ≠ 8
singles ==> r9c2 = 5, r4c2 = 3, r5c2 = 2, r6c1 = 5, r6c5 = 3, r7c2 = 8, r6c8 = 2
whip[1]: c8n3{r2 .} ==> r2c7 ≠ 3, r2c9 ≠ 3
biv-chain-rc[3]: r2c7{n1 n9} - r6c7{n9 n4} - r4c9{n4 n1} ==> r2c9 ≠ 1, r4c7 ≠ 1
hidden-single-in-a-block ==> r4c9 = 1
whip[1]: b6n4{r6c7 .} ==> r9c7 ≠ 4
biv-chain-rc[4]: r1c6{n7 n3} - r1c8{n3 n4} - r9c8{n4 n1} - r9c7{n1 n7} ==> r9c6 ≠ 7
stte
init-time = 0.21s, solve-time = 0.17s, total-time = 0.38s
 +--------------+-------------+---------------+
 | 1    36   8  | 679 469  37 | 2    34  5    | 
 | 4    7    2  | 5   68   38 | 139  13  1369 | 
 | 36   9    5  | 1   46   2  | 8    7   346  | 
 +--------------+-------------+---------------+
 | 8    35   47 | 2   357  9  | 1345 6   134  | 
 | 2356 2356 79 | 4   357  1  | 359  8   239  | 
 | 235  1    49 | 8   35   6  | 3459 234 7    | 
 +--------------+-------------+---------------+
 | 29   28   6  | 79  189  4  | 137  5   123  | 
 | 7    4    1  | 3   2    5  | 6    9   8    | 
 | 259  258  3  | 679 1689 78 | 147  124 124  | 
 +--------------+-------------+---------------+
Mauriès Robert wrote:It is possible to solve the puzzle with only one chain (anti-track), but of greater length (9 candidates) like this :
P'(6r2c9) : (-6r2c9)=>6r2c5->8r2c6->7r9c6->[(7r7c7->3r7c9*)->9r7c4->2r7c1->2r5c2*]->9r5c9 => -9r2c9 => r2c7=9 and finish with the basic techniques.
So we should be able to solve the puzzle with a single whip [9] or a single AIC??
RSW wrote:One step with a Nishio Net:
                             ->3r7c9->--------------------------------------------
                           /                    \                    \             \
P'(7r9c7) : (-7r9c7)=>7r7c7->9r7c4->2r7c1->2r6c8->9r5c9->7r5c3->4r4c3->1r4c9->1r2c8->3r1c8->7r1c6
                                                        \                   /      /
                                                          ->9r2c7-----------------
=> -7r9c6 => r9c6=8, stte.
Mauriès Robert wrote:Your Nishio aims to eliminate 7r9c6. To do this elimination, here is how I would proceed.Hidden Text: Show
Much simpler than your diagram![]()
                             ->3r7c9->------------------------------
                           /                    \                    \             
P'(7r9c7) : (-7r9c7)=>7r7c7->9r7c4->2r7c1->2r6c8->9r5c9->7r5c3->4r4c3->1r4c9->1r2c8->3r1c8->7r1c6
                                                \       \                   /       /
                                                 \        ->9r2c7----------        /
                                                   -------------------------------
=> -7r9c6 => r9c6=8, stte. 7r9c7 7r7c7
 . . . 7r7c4 9r7c4
 . . . . . . 9r7c1 2r7c1
 . . . . . . . . . 2r6c1 2r6c8
 . . . 3r7c7 . . . . . . . . . 3r7c9
 . . . . . . . . . . . . 2r5c9 3r5c9 . 9r5c9
 . . . . . . . . . . . . . . . . . . . 9r5c3 7r5c3
 . . . . . . . . . . . . . . . . . . . . . . 7r4c3 4r4c3
 . . . . . . . . . . . . . . . 3r4c9 . . . . . . . 4r4c9 1r4c9
 . . . . . . . . . . . . . . . . . . . 9r2c9 . . . . . . . . . 9r2c7
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1r2c9 1r2c7 1r2c8
 . . . . . . . . . . . . . . . 3r23c9  . . . . . . . . . . . . 3r2c7 3r2c8 3r1c8
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3r1c6 7r1c6
=====================================================================================
-7r9c6Mauriès Robert wrote:Why, in your TMs, do you write 7r1c8 on the last line when it is eliminated in the puzzle?
(try-to-eliminate-candidates 
   "......2..4725......9.1..8..8..2.9.6....4.1....1.8.6..7..6..4.5......5698..3......"
   (create$ (nrc-to-label 9 2 9))
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W
***  Using CLIPS 6.32-r774
***********************************************************************************************
singles ==> r3c3 = 5, r5c8 = 8, r1c9 = 5, r1c3 = 8, r1c1 = 1,  r8c3 = 1, r8c2 = 4
160 candidates, 807 csp-links and 807 links. Density = 6.34%
whip[1]: c7n7{r9 .} ==> r9c8 ≠ 7
whip[1]: r8n3{c5 .} ==> r7c5 ≠ 3, r7c4 ≠ 3
whip[1]: c3n9{r6 .} ==> r6c1 ≠ 9, r5c1 ≠ 9
whip[1]: c3n7{r5 .} ==> r5c1 ≠ 7
whip[1]: c6n3{r3 .} ==> r3c5 ≠ 3, r1c4 ≠ 3, r1c5 ≠ 3, r2c5 ≠ 3
hidden-single-in-a-column ==> r8c4 = 3
whip[1]: r1n9{c5 .} ==> r2c5 ≠ 9
whip[1]: b5n7{r5c5 .} ==> r9c5 ≠ 7, r1c5 ≠ 7, r3c5 ≠ 7, r7c5 ≠ 7, r8c5 ≠ 7
singles ==> r8c5 = 2,  r8c1 = 7, r3c6 = 2, r3c8 = 7
whip[9]: r2n6{c9 c5} - r2n8{c5 c6} - r9c6{n8 n7} - r7c4{n7 n9} - r7c1{n9 n2} - c2n2{r9 r5} - r5c9{n2 n3} - r7n3{c9 c7} - r7n7{c7 .} ==> r2c9 ≠ 9
stte+Whip[1]denis_berthier wrote:I haven't followed all the discussion in detail, but on seeing some proposed solution, I added a new function to SudoRules.
I can now focus the search of whips or braids to a predefined list of candidates.
And SudoRules finds a (different) whip[9] for the elimination mentioned in a post above
(try-to-eliminate-candidates 
   "......2..4725......9.1..8..8..2.9.6....4.1....1.8.6..7..6..4.5......5698..3......"
   (create$ (nrc-to-label 7 9 6))
)
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = W
***  Using CLIPS 6.32-r774
***********************************************************************************************
same start as in my previous post, until before the whip[9]
whip[13]: r7c4{n7 n9} - r7c1{n9 n2} - c2n2{r9 r5} - r7c2{n2 n8} - r9n8{c2 c5} - r7c5{n8 n1} - r7c9{n1 n3} - r5c9{n3 n9} - r6n9{c7 c3} - c3n4{r6 r4} - r4c9{n4 n1} - r2c9{n1 n6} - r2c5{n6 .} ==> r9c6 ≠ 7
stte