I suggest you solve this rather tough puzzle.
Robert
...2.43.....3...61....8..2..21...9..3.......2..8...47..5..6....29...5.....67.9...
puzzle: Show
solution: Show
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = gW+SFin
*** Using CLIPS 6.32-r770
***********************************************************************************************
singles ==> r6c2 = 6, r2c6 = 7, r3c9 = 4, r2c3 = 2, r1c1 = 6
184 candidates, 999 csp-links and 999 links. Density = 5.93%
whip[1]: r6n1{c6 .} ==> r5c6 ≠ 1, r5c4 ≠ 1, r5c5 ≠ 1
whip[1]: b3n9{r1c9 .} ==> r1c5 ≠ 9, r1c3 ≠ 9
finned-x-wing-in-columns: n9{c3 c4}{r3 r5} ==> r5c5 ≠ 9
139 g-candidates, 684 csp-glinks and 399 non-csp glinks
biv-chain-rc[4]: r3c7{n7 n5} - r2c7{n5 n8} - r2c2{n8 n4} - r5c2{n4 n7} ==> r3c2 ≠ 7
whip[4]: r1c5{n1 n5} - r1c3{n5 n7} - b7n7{r8c3 r7c1} - b7n1{r7c1 .} ==> r9c5 ≠ 1
g-whip[5]: r1c3{n5 n7} - b7n7{r8c3 r7c1} - b7n8{r7c1 r9c123} - r9c9{n8 n3} - r6c9{n3 .} ==> r1c9 ≠ 5
t-whip[6]: c3n4{r8 r5} - r5c2{n4 n7} - r5c5{n7 n5} - c4n5{r6 r3} - r3c7{n5 n7} - c1n7{r3 .} ==> r7c1 ≠ 4
t-whip[6]: c3n4{r8 r5} - r5c2{n4 n7} - r5c5{n7 n5} - r1c5{n5 n1} - r1c2{n1 n8} - r2c2{n8 .} ==> r9c2 ≠ 4
t-whip[6]: r3c6{n6 n1} - r1c5{n1 n5} - r1c3{n5 n7} - r3n7{c3 c7} - r8n7{c7 c9} - c9n6{r8 .} ==> r4c6 ≠ 6
biv-chain[3]: r4c6{n3 n8} - r5c6{n8 n6} - b6n6{r5c7 r4c9} ==> r4c9 ≠ 3
biv-chain[6]: r4c6{n3 n8} - r5c6{n8 n6} - r3c6{n6 n1} - r1n1{c5 c2} - c2n7{r1 r5} - b5n7{r5c5 r4c5} ==> r4c5 ≠ 3
whip[6]: r5c2{n4 n7} - r5c5{n7 n5} - c4n5{r6 r3} - c3n5{r3 r1} - r1n7{c3 c9} - r3c7{n7 .} ==> r5c4 ≠ 4
whip[6]: r5c2{n4 n7} - r5c5{n7 n5} - c4n5{r6 r3} - c3n5{r3 r1} - r1n7{c3 c9} - r3c7{n7 .} ==> r5c3 ≠ 4
whip[1]: c3n4{r8 .} ==> r9c1 ≠ 4
whip[6]: r8n6{c9 c7} - r8n7{c7 c3} - r1c3{n7 n5} - r5c3{n5 n9} - r6c1{n9 n5} - r6c9{n5 .} ==> r8c9 ≠ 3
t-whip[7]: b7n1{r9c2 r7c1} - r9c1{n1 n8} - r9c2{n8 n3} - r3c2{n3 n1} - c6n1{r3 r6} - r6n2{c6 c5} - r9n2{c5 .} ==> r9c7 ≠ 1
whip[6]: r8n6{c7 c9} - b6n6{r4c9 r5c7} - c7n1{r5 r7} - b9n7{r7c7 r7c9} - r7c1{n7 n8} - b8n8{r7c4 .} ==> r8c7 ≠ 8
whip[6]: r2c7{n5 n8} - r9c7{n8 n2} - c5n2{r9 r6} - c5n9{r6 r2} - r2n5{c5 c1} - b4n5{r4c1 .} ==> r5c7 ≠ 5
g-whip[6]: r5c6{n8 n6} - r3c6{n6 n1} - r1n1{c5 c2} - b1n8{r1c2 r2c123} - c7n8{r2 r789} - r8n8{c9 .} ==> r5c4 ≠ 8
z-chain[7]: b3n7{r3c7 r1c9} - r1c3{n7 n5} - r2n5{c1 c5} - c5n9{r2 r6} - c5n2{r6 r9} - r9c7{n2 n8} - r2c7{n8 .} ==> r3c7 ≠ 5
naked-single ==> r3c7 = 7
t-whip[5]: r9n1{c2 c8} - r9n4{c8 c5} - b8n2{r9c5 r7c6} - r7c7{n2 n8} - r7c4{n8 .} ==> r7c1 ≠ 1
whip[1]: b7n1{r9c2 .} ==> r9c8 ≠ 1
t-whip[3]: r8n7{c9 c3} - r7c1{n7 n8} - b8n8{r7c4 .} ==> r8c9 ≠ 8
whip[5]: r9n4{c8 c5} - r9n2{c5 c7} - r7c7{n2 n1} - r7c4{n1 n8} - b7n8{r7c1 .} ==> r9c8 ≠ 8
whip[5]: r8n8{c4 c8} - r5n8{c8 c7} - c7n6{r5 r8} - c7n1{r8 r7} - r7n2{c7 .} ==> r7c6 ≠ 8
whip[1]: b8n8{r8c4 .} ==> r4c4 ≠ 8
whip[6]: c9n6{r4 r8} - r8n7{c9 c3} - r7c1{n7 n8} - c4n8{r7 r8} - c4n4{r8 r7} - c3n4{r7 .} ==> r4c4 ≠ 6
singles ==> r4c9 = 6, r8c9 = 7, r8c7 = 6
hidden-pairs-in-a-row: r4{n3 n8}{c6 c8} ==> r4c8 ≠ 5
naked-triplets-in-a-block: b5{r4c4 r4c5 r5c5}{n4 n5 n7} ==> r6c5 ≠ 5, r6c4 ≠ 5, r5c4 ≠ 5
z-chain[3]: c1n4{r2 r4} - r4c4{n4 n5} - r3n5{c4 .} ==> r2c1 ≠ 5
biv-chain[4]: r2n5{c7 c5} - c5n9{r2 r6} - r6c1{n9 n5} - b6n5{r6c9 r5c8} ==> r1c8 ≠ 5
singles ==> r2c7 = 5, r2c5 = 9
whip[1]: r2n8{c2 .} ==> r1c2 ≠ 8
biv-chain[4]: c4n5{r4 r3} - c4n6{r3 r5} - c4n9{r5 r6} - r6c1{n9 n5} ==> r4c1 ≠ 5
whip[1]: r4n5{c5 .} ==> r5c5 ≠ 5
naked-pairs-in-a-row: r5{c2 c5}{n4 n7} ==> r5c3 ≠ 7
hidden-pairs-in-a-column: c1{n5 n9}{r3 r6} ==> r3c1 ≠ 1
hidden-single-in-a-column ==> r9c1 = 1
biv-chain[4]: c3n4{r8 r7} - r7n7{c3 c1} - r4c1{n7 n4} - r5n4{c2 c5} ==> r8c5 ≠ 4
biv-chain[4]: r9c2{n3 n8} - r2c2{n8 n4} - r5n4{c2 c5} - r9n4{c5 c8} ==> r9c8 ≠ 3
biv-chain[4]: r4c1{n4 n7} - b7n7{r7c1 r7c3} - r1c3{n7 n5} - c5n5{r1 r4} ==> r4c5 ≠ 4
biv-chain[4]: c2n8{r9 r2} - c2n4{r2 r5} - c5n4{r5 r9} - r9n2{c5 c7} ==> r9c7 ≠ 8
singles ==> r9c7 = 2, r7c6 = 2, r6c5 = 2
biv-chain[3]: r8c3{n4 n3} - c5n3{r8 r9} - r9n4{c5 c8} ==> r8c8 ≠ 4
z-chain-rc[3]: r7c7{n8 n1} - r8c8{n1 n3} - r4c8{n3 .} ==> r7c8 ≠ 8
biv-chain-cn[4]: c2n3{r9 r3} - c2n1{r3 r1} - c5n1{r1 r8} - c5n3{r8 r9} ==> r9c9 ≠ 3
biv-chain-rc[3]: r9c9{n8 n5} - r6c9{n5 n3} - r4c8{n3 n8} ==> r8c8 ≠ 8
singles ==> r8c4 = 8, r8c3 = 4
biv-chain-rc[3]: r7c7{n8 n1} - r8c8{n1 n3} - r4c8{n3 n8} ==> r5c7 ≠ 8
stte
denis_berthier wrote:It seems there are few contenders for solving non pre-digested puzzles.
Was there anything special with this one?
+-----------------------+-------------------------+------------------------+
| 6 178 57 | 2 15 4 | 3 589 5789 |
| 4589 48 2 | 3 59 7 | 58 6 1 |
| 1579 137 3579 | 1569 8 16 | 57 2 4 |
+-----------------------+-------------------------+------------------------+
| 457 2 1 | 4568 3457 368 | 9 358 3568 |
| 3 47 4579 | 45689 4579 68 | 1568 158 2 |
| 59 6 8 | 159 12359 123 | 4 7 35 |
+-----------------------+-------------------------+------------------------+
| 1478 5 347 | 148 6 12-38 | 1278 13489 3789 |
| 2 9 347 | 148 134 5 | 1678 1348 3678 |
| 148 1348 6 | 7 1234 9 | 1258 13458 358 |
+-----------------------+-------------------------+------------------------+
+-----------------------+---------------------+------------------------+
| 6 178 a57 | 2 15 4 | 3 589 b5789* |
| B4589* 48 2 | 3 B59* 7 | 58 6 1 |
| 1579 137 3579 | 159 8 6 | b57* 2 4 |
+-----------------------+---------------------+------------------------+
| 47-5 2 1 | 456 457 3 | 9 E58 E568 |
| 3 47 B479-5* | C4569 B4579* 8 |De156 e15 2 |
| A59 6 8 | 159 259 12 | 4 7 3 |
+-----------------------+---------------------+------------------------+
| 1478 5 347 | 148 6 12 | 1278 13489 789 |
| 2 9 b347* | 148 134 5 |db1678* 1348 c678 |
| 148 1348 6 | 7 234 9 | 1258 13458 58 |
+-----------------------+---------------------+------------------------+
+--------------------+--------------------+------------------------+
| 6 178 57 | 2 15 4 | 3 589 5789 |
| 489 48 2 | 3 c59 7 | b58 6 1 |
| 179 137 357 | 159 8 6 | a57 2 4 |
+--------------------+--------------------+------------------------+
| 47 2 1 | 456 457 3 | 9 58 568 |
| 3 47 9 | 456 457 8 | I156 15 2 |
| 5 6 8 | 19 c29 d12 | 4 7 3 |
+--------------------+--------------------+------------------------+
| z178 5 y347 | 148 6 e12 |Hf128-7 x13489 w89-7 |
| 2 9 347 | F148 F134 5 |IG168-7 G1348 678 |
| z18 z138 6 | 7 234 9 | H1258 13458 58 |
+--------------------+--------------------+------------------------+
+--------------------+--------------------+----------------------+
| 6 178 57 | 2 15 4 | 3 59 589 |
| 489 48 2 | 3 59 7 | 58 6 1 |
| 19 13 35 | 159 8 6 | 7 2 4 |
+--------------------+--------------------+----------------------+
| a47 2 1 | 5-4 457 3 | 9 8 6 |
| 3 47 9 | 6 47 8 | 15 15 2 |
| 5 6 8 | 19 29 12 | 4 7 3 |
+--------------------+--------------------+----------------------+
| b178 5 347 | b14 6 b12 | b128 1349 89 |
| 2 9 34 | 8 134 5 | 6 134 7 |
| 18 138 6 | 7 234 9 | 1258 1345 58 |
+--------------------+--------------------+----------------------+
Mauriès Robert wrote:Hi Cenoman.
...In your steps 1 and 2 you do not eliminate 1r6c5, so you cannot consider 1r1c5 and 1r8c5 strongly bound in step 3. You are missing one step.
Mauriès Robert wrote:In any case thank you for the time spent on this rather long puzzle.