I propose you this puzzle. What is its level of difficulty ?
..9..2..6..5.1.9.2..2..9.7..2...14..6.......7..42...8..3.8..7..2.7.5.6..5..9..3..
puzzle: Show
solution: Show
Robert
.----------------------.------------------.--------------.
|  3478     478    9   | 3457  3478   2   | 58   1   6   |
| *3478     4678   5   | 3467  1     d478 | 9   a34  2   |
| b1348    b1468   2   | 3456  348    9   | 58   7   34  |
:----------------------+------------------+--------------:
| c789      2      38  | 37    3789   1   | 4    6   5   |
|  6    abcd589-1  138 | 34    3489  d458 | 2    39  7   |
| c79    abc579    4   | 2     3679   567 | 1    8   39  |
:----------------------+------------------+--------------:
| b149      3      16  | 8     2      46  | 7    5   149 |
|  2      ab489    7   | 1     5      3   | 6   a49  489 |
|  5        148    168 | 9     467    467 | 3    2   148 |
'----------------------'------------------'--------------'
a:(3)r2c1 - (3=4)r2c8 - (4=9)r8c2 - r8c2 = (9-5)r6c2 = (5)r5c2
  ||
  ||        (1)r7c1 - r3c1 = (1)r3c2
  ||        ||
b:(4)r2c1 - (4)r7c1
  ||        ||
  ||        (9)r7c1 - r8c2 = (9-5)r6c2 = (5)r5c2
  ||
c:(7)r2c1 - r46c1 = (7-5)r6c2 = (5)r5c2
  ||
d:(8)r2c1 - r2c6 = (8-5)r5c6 = (5)r5c2
=> -1 r5c2
.----------------.------------------.-------------.
|  3478  g78   9 |  345  F3478   2  | g58  1   6  |
|  3478   678  5 |  346   1     E78 |  9   34  2  |
| i1348  i168  2 | i3456  348    9  | h58  7   34 |
:----------------+------------------+-------------:
|  89     2    3 |  7     89     1  |  4   6   5  |
|  6      589  1 |  34    3489  E58 |  2   39  7  |
|  79   cD579  4 |  2     369   D56 |  1   8   39 |
:----------------+------------------+-------------:
| a9-1    3    6 |  8     2      4  |  7   5   19 |
|  2     b49   7 |  1     5      3  |  6   49  8  |
|  5      14   8 |  9     67     67 |  3   2   14 |
'----------------'------------------'-------------'
(9)r7c1 = r8c2 - r6c2 = [(75)r6c26 = (58-7)r52c6 = (7)r1c5] - (7=85)r1c27 - r3c7 = (561)r3c421 => -1 r7c1; stte
 +----------------------+----------------------+------------------+
 |  3478   478    9     |  3457   3478   2     |  58   1    6     | 
 |Ww347-8  4678   5     |  3467   1     c478   |  9   x34   2     | 
 |  1348   1468   2     |  3456   348    9     |  58   7    34    | 
 +----------------------+----------------------+------------------+
 |Xa789    2    Yb38    |  37     3789   1     |  4    6    5     | 
 |  6     b1589 Yb138   |  34     3489  c458   |  2   A39   7     | 
 |XB79    B579    4     |  2      3679  B567   |  1    8   B39    | 
 +----------------------+----------------------+------------------+
 | z19-4   3     Y16    |  8      2    ZC46    |  7    5   y19-4  | 
 |  2      489    7     |  1      5      3     |  6  xA49   489   | 
 |  5      148    168   |  9      467    467   |  3    2    148   | 
 +----------------------+----------------------+------------------+ +----------------------+----------------------+------------------+
 |  3478   78     9     |  3457   3478   2     |  58   1    6     | 
 |  347    678    5     |  3467   1      78    |  9    34   2     | 
 |  1348   168    2     |  3456   348    9     |  58   7    34    | 
 +----------------------+----------------------+------------------+
 | b789    2     b38    |  37     3789   1     |  4    6    5     | 
 |  6      1589  b138   |  34     3489   58    |  2    39   7     | 
 | b79     579    4     |  2      3679   567   |  1    8    39    | 
 +----------------------+----------------------+------------------+
 | a19     3      6     |  8      2      4     |  7    5    19    | 
 |  2      489    7     |  1      5      3     |  6    49   489   | 
 |  5      148    8-1   |  9      67     67    |  3    2    148   | 
 +----------------------+----------------------+------------------+ +--------------------+---------------------+-----------------+
 |  3478  c78    9    |  345    3478   2    | c58   1    6    | 
 | d347    678   5    | d346    1      78   |  9   d34   2    | 
 |  1348   168   2    | a345-6  348    9    | b58   7    34   | 
 +--------------------+---------------------+-----------------+
 |  89     2     3    |  7      89     1    |  4    6    5    | 
 |  6      589   1    |  34     3489   58   |  2    39   7    | 
 |  79     579   4    |  2      369    56   |  1    8    39   | 
 +--------------------+---------------------+-----------------+
 |  19     3     6    |  8      2      4    |  7    5    19   | 
 |  2      49    7    |  1      5      3    |  6    49   8    | 
 |  5      14    8    |  9      67     67   |  3    2    14   | 
 +--------------------+---------------------+-----------------+(solve "..9..2..6..5.1.9.2..2..9.7..2...14..6.......7..42...8..3.8..7..2.7.5.6..5..9..3..")
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = gB+SFin
***  Using CLIPS 6.32-r770
***********************************************************************************************
hidden-single-in-a-column ==> r8c4 = 1
hidden-single-in-a-block ==> r8c6 = 3
hidden-single-in-a-column ==> r5c7 = 2
hidden-single-in-a-column ==> r4c8 = 6
175 candidates, 942 csp-links and 942 links. Density = 6.19%
whip[1]: c3n6{r9 .} ==> r9c2 ≠ 6
whip[1]: c6n5{r6 .} ==> r5c4 ≠ 5, r4c4 ≠ 5
hidden-single-in-a-row ==> r4c9 = 5
naked-single ==> r6c7 = 1
hidden-single-in-a-block ==> r7c8 = 5
hidden-single-in-a-block ==> r9c8 = 2
hidden-single-in-a-block ==> r7c5 = 2
hidden-single-in-a-column ==> r1c8 = 1
whip[1]: c3n3{r5 .} ==> r6c1 ≠ 3, r4c1 ≠ 3
whip[1]: c7n8{r3 .} ==> r3c9 ≠ 8
whip[1]: c4n6{r3 .} ==> r3c5 ≠ 6, r2c6 ≠ 6
biv-chain[3]: r3c9{n4 n3} - b6n3{r6c9 r5c8} - r5c4{n3 n4} ==> r3c4 ≠ 4
biv-chain[3]: r4n9{c5 c1} - b7n9{r7c1 r8c2} - c8n9{r8 r5} ==> r5c5 ≠ 9
biv-chain[4]: r3c9{n4 n3} - r6n3{c9 c5} - b5n6{r6c5 r6c6} - r7c6{n6 n4} ==> r7c9 ≠ 4
biv-chain[4]: r3c9{n4 n3} - r6c9{n3 n9} - r7c9{n9 n1} - c1n1{r7 r3} ==> r3c1 ≠ 4
biv-chain[4]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} ==> r5c6 ≠ 4
z-chain[4]: c1n4{r2 r7} - b7n9{r7c1 r8c2} - r8c8{n9 n4} - b3n4{r2c8 .} ==> r3c2 ≠ 4
;;; RS1
t-whip[4]: b7n9{r8c2 r7c1} - r6c1{n9 n7} - r4c1{n7 n8} - c3n8{r5 .} ==> r8c2 ≠ 8
hidden-single-in-a-row ==> r8c9 = 8
x-wing-in-rows: n9{r5 r8}{c2 c8} ==> r6c2 ≠ 9
biv-chain[4]: r5n1{c3 c2} - r5n9{c2 c8} - c9n9{r6 r7} - b9n1{r7c9 r9c9} ==> r9c3 ≠ 1
biv-chain[4]: c5n9{r4 r6} - c5n6{r6 r9} - r9c3{n6 n8} - r4c3{n8 n3} ==> r4c5 ≠ 3
biv-chain[4]: r4c4{n7 n3} - r4c3{n3 n8} - r9c3{n8 n6} - c5n6{r9 r6} ==> r6c5 ≠ 7
z-chain[4]: r9c3{n8 n6} - c5n6{r9 r6} - c5n9{r6 r4} - r4n8{c5 .} ==> r5c3 ≠ 8
whip[4]: r2c8{n3 n4} - r8n4{c8 c2} - b1n4{r1c2 r1c1} - r1n3{c1 .} ==> r2c4 ≠ 3
biv-chain[5]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} - c6n8{r5 r2} ==> r2c6 ≠ 4
whip[1]: c6n4{r9 .} ==> r9c5 ≠ 4
biv-chain-rc[4]: r9c5{n7 n6} - r9c3{n6 n8} - r4c3{n8 n3} - r4c4{n3 n7} ==> r4c5 ≠ 7
z-chain[4]: r2c6{n7 n8} - r5c6{n8 n5} - c2n5{r5 r6} - c2n7{r6 .} ==> r2c1 ≠ 7
z-chain[5]: c6n8{r2 r5} - r4c5{n8 n9} - r4c1{n9 n7} - b5n7{r4c4 r6c6} - r2c6{n7 .} ==> r2c1 ≠ 8
naked-pairs-in-a-row: r2{c1 c8}{n3 n4} ==> r2c4 ≠ 4, r2c2 ≠ 4
finned-x-wing-in-rows: n4{r2 r8}{c8 c1} ==> r7c1 ≠ 4
stte
;;; same path upto RS1
biv-chain[5]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} - c6n8{r5 r2} ==> r2c6 ≠ 4
whip[1]: c6n4{r9 .} ==> r9c5 ≠ 4
z-chain[4]: r2c6{n7 n8} - r5c6{n8 n5} - c2n5{r5 r6} - c2n7{r6 .} ==> r2c1 ≠ 7
z-chain[5]: r5c4{n3 n4} - r5c5{n4 n8} - r3c5{n8 n4} - r3c9{n4 n3} - r6n3{c9 .} ==> r4c5 ≠ 3
z-chain[6]: r2n6{c4 c2} - r2n7{c2 c6} - r9n7{c6 c5} - c5n6{r9 r6} - c5n3{r6 r5} - c8n3{r5 .} ==> r2c4 ≠ 3
z-chain[8]: r2n6{c2 c4} - r2n7{c4 c6} - c6n8{r2 r5} - r5n5{c6 c2} - r5n1{c2 c3} - r7c3{n1 n6} - r7c6{n6 n4} - c1n4{r7 .} ==> r2c2 ≠ 4
z-chain[6]: c6n8{r2 r5} - r4n8{c5 c3} - c3n3{r4 r5} - r5c4{n3 n4} - r2n4{c4 c8} - r2n3{c8 .} ==> r2c1 ≠ 8
naked-pairs-in-a-row: r2{c1 c8}{n3 n4} ==> r2c4 ≠ 4
biv-chain[3]: r2n4{c1 c8} - r8c8{n4 n9} - b7n9{r8c2 r7c1} ==> r7c1 ≠ 4
hidden-single-in-a-row ==> r7c6 = 4
hidden-single-in-a-row ==> r7c3 = 6
whip[1]: b7n4{r9c2 .} ==> r1c2 ≠ 4
biv-chain[4]: r6n5{c2 c6} - r5c6{n5 n8} - r2n8{c6 c2} - r1c2{n8 n7} ==> r6c2 ≠ 7
whip[1]: c2n7{r2 .} ==> r1c1 ≠ 7
z-chain[4]: r4n8{c3 c5} - r4n9{c5 c1} - r7c1{n9 n1} - r9c3{n1 .} ==> r5c3 ≠ 8
z-chain[4]: c2n5{r5 r6} - c2n9{r6 r8} - r7c1{n9 n1} - r3n1{c1 .} ==> r5c2 ≠ 1
stte
denis_berthier wrote:
- Code: Select all
 biv-chain[4]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} ==> r5c6 ≠ 4
z-chain[4]: c1n4{r2 r7} - b7n9{r7c1 r8c2} - r8c8{n9 n4} - b3n4{r2c8 .} ==> r3c2 ≠ 4
t-whip[4]: b7n9{r8c2 r7c1} - r6c1{n9 n7} - r4c1{n7 n8} - c3n8{r5 .} ==> r8c2 ≠ 8
denis_berthier wrote:It is clearly stated in PBCS that z-chains are the z-extension of bivalue-chains and that they are reversible.
They could be called z-biv-chains, but then some systematic opponents would whine that "biv" is incorrect because they are not really bivalue.
In chains, the target(s) is (are) linked to both ends. Not in whips or braids. I think the names are perfectly suggestive of this difference.
Already in HLS, I had defined nrczt-chains; I still called them chains because they also had this property.
denis_berthier wrote:nrczt6-chain {n9 n2}r6c1 - {n2 n6}r4c1 - {n6 n8}r5c1 - n9{r5c1 r4c3} - {n9 n7}r1c3 - {n7 n9}r2c1 ==> r8c1 <> n9
SpAce wrote:Writing them [z-chains] as (special cases of) biv-chains would make that more obvious, too.