I propose you this puzzle. What is its level of difficulty ?
..9..2..6..5.1.9.2..2..9.7..2...14..6.......7..42...8..3.8..7..2.7.5.6..5..9..3..
puzzle: Show
solution: Show
Robert
.----------------------.------------------.--------------.
| 3478 478 9 | 3457 3478 2 | 58 1 6 |
| *3478 4678 5 | 3467 1 d478 | 9 a34 2 |
| b1348 b1468 2 | 3456 348 9 | 58 7 34 |
:----------------------+------------------+--------------:
| c789 2 38 | 37 3789 1 | 4 6 5 |
| 6 abcd589-1 138 | 34 3489 d458 | 2 39 7 |
| c79 abc579 4 | 2 3679 567 | 1 8 39 |
:----------------------+------------------+--------------:
| b149 3 16 | 8 2 46 | 7 5 149 |
| 2 ab489 7 | 1 5 3 | 6 a49 489 |
| 5 148 168 | 9 467 467 | 3 2 148 |
'----------------------'------------------'--------------'
a:(3)r2c1 - (3=4)r2c8 - (4=9)r8c2 - r8c2 = (9-5)r6c2 = (5)r5c2
||
|| (1)r7c1 - r3c1 = (1)r3c2
|| ||
b:(4)r2c1 - (4)r7c1
|| ||
|| (9)r7c1 - r8c2 = (9-5)r6c2 = (5)r5c2
||
c:(7)r2c1 - r46c1 = (7-5)r6c2 = (5)r5c2
||
d:(8)r2c1 - r2c6 = (8-5)r5c6 = (5)r5c2
=> -1 r5c2
.----------------.------------------.-------------.
| 3478 g78 9 | 345 F3478 2 | g58 1 6 |
| 3478 678 5 | 346 1 E78 | 9 34 2 |
| i1348 i168 2 | i3456 348 9 | h58 7 34 |
:----------------+------------------+-------------:
| 89 2 3 | 7 89 1 | 4 6 5 |
| 6 589 1 | 34 3489 E58 | 2 39 7 |
| 79 cD579 4 | 2 369 D56 | 1 8 39 |
:----------------+------------------+-------------:
| a9-1 3 6 | 8 2 4 | 7 5 19 |
| 2 b49 7 | 1 5 3 | 6 49 8 |
| 5 14 8 | 9 67 67 | 3 2 14 |
'----------------'------------------'-------------'
(9)r7c1 = r8c2 - r6c2 = [(75)r6c26 = (58-7)r52c6 = (7)r1c5] - (7=85)r1c27 - r3c7 = (561)r3c421 => -1 r7c1; stte
+----------------------+----------------------+------------------+
| 3478 478 9 | 3457 3478 2 | 58 1 6 |
|Ww347-8 4678 5 | 3467 1 c478 | 9 x34 2 |
| 1348 1468 2 | 3456 348 9 | 58 7 34 |
+----------------------+----------------------+------------------+
|Xa789 2 Yb38 | 37 3789 1 | 4 6 5 |
| 6 b1589 Yb138 | 34 3489 c458 | 2 A39 7 |
|XB79 B579 4 | 2 3679 B567 | 1 8 B39 |
+----------------------+----------------------+------------------+
| z19-4 3 Y16 | 8 2 ZC46 | 7 5 y19-4 |
| 2 489 7 | 1 5 3 | 6 xA49 489 |
| 5 148 168 | 9 467 467 | 3 2 148 |
+----------------------+----------------------+------------------+
+----------------------+----------------------+------------------+
| 3478 78 9 | 3457 3478 2 | 58 1 6 |
| 347 678 5 | 3467 1 78 | 9 34 2 |
| 1348 168 2 | 3456 348 9 | 58 7 34 |
+----------------------+----------------------+------------------+
| b789 2 b38 | 37 3789 1 | 4 6 5 |
| 6 1589 b138 | 34 3489 58 | 2 39 7 |
| b79 579 4 | 2 3679 567 | 1 8 39 |
+----------------------+----------------------+------------------+
| a19 3 6 | 8 2 4 | 7 5 19 |
| 2 489 7 | 1 5 3 | 6 49 489 |
| 5 148 8-1 | 9 67 67 | 3 2 148 |
+----------------------+----------------------+------------------+
+--------------------+---------------------+-----------------+
| 3478 c78 9 | 345 3478 2 | c58 1 6 |
| d347 678 5 | d346 1 78 | 9 d34 2 |
| 1348 168 2 | a345-6 348 9 | b58 7 34 |
+--------------------+---------------------+-----------------+
| 89 2 3 | 7 89 1 | 4 6 5 |
| 6 589 1 | 34 3489 58 | 2 39 7 |
| 79 579 4 | 2 369 56 | 1 8 39 |
+--------------------+---------------------+-----------------+
| 19 3 6 | 8 2 4 | 7 5 19 |
| 2 49 7 | 1 5 3 | 6 49 8 |
| 5 14 8 | 9 67 67 | 3 2 14 |
+--------------------+---------------------+-----------------+
(solve "..9..2..6..5.1.9.2..2..9.7..2...14..6.......7..42...8..3.8..7..2.7.5.6..5..9..3..")
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = gB+SFin
*** Using CLIPS 6.32-r770
***********************************************************************************************
hidden-single-in-a-column ==> r8c4 = 1
hidden-single-in-a-block ==> r8c6 = 3
hidden-single-in-a-column ==> r5c7 = 2
hidden-single-in-a-column ==> r4c8 = 6
175 candidates, 942 csp-links and 942 links. Density = 6.19%
whip[1]: c3n6{r9 .} ==> r9c2 ≠ 6
whip[1]: c6n5{r6 .} ==> r5c4 ≠ 5, r4c4 ≠ 5
hidden-single-in-a-row ==> r4c9 = 5
naked-single ==> r6c7 = 1
hidden-single-in-a-block ==> r7c8 = 5
hidden-single-in-a-block ==> r9c8 = 2
hidden-single-in-a-block ==> r7c5 = 2
hidden-single-in-a-column ==> r1c8 = 1
whip[1]: c3n3{r5 .} ==> r6c1 ≠ 3, r4c1 ≠ 3
whip[1]: c7n8{r3 .} ==> r3c9 ≠ 8
whip[1]: c4n6{r3 .} ==> r3c5 ≠ 6, r2c6 ≠ 6
biv-chain[3]: r3c9{n4 n3} - b6n3{r6c9 r5c8} - r5c4{n3 n4} ==> r3c4 ≠ 4
biv-chain[3]: r4n9{c5 c1} - b7n9{r7c1 r8c2} - c8n9{r8 r5} ==> r5c5 ≠ 9
biv-chain[4]: r3c9{n4 n3} - r6n3{c9 c5} - b5n6{r6c5 r6c6} - r7c6{n6 n4} ==> r7c9 ≠ 4
biv-chain[4]: r3c9{n4 n3} - r6c9{n3 n9} - r7c9{n9 n1} - c1n1{r7 r3} ==> r3c1 ≠ 4
biv-chain[4]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} ==> r5c6 ≠ 4
z-chain[4]: c1n4{r2 r7} - b7n9{r7c1 r8c2} - r8c8{n9 n4} - b3n4{r2c8 .} ==> r3c2 ≠ 4
;;; RS1
t-whip[4]: b7n9{r8c2 r7c1} - r6c1{n9 n7} - r4c1{n7 n8} - c3n8{r5 .} ==> r8c2 ≠ 8
hidden-single-in-a-row ==> r8c9 = 8
x-wing-in-rows: n9{r5 r8}{c2 c8} ==> r6c2 ≠ 9
biv-chain[4]: r5n1{c3 c2} - r5n9{c2 c8} - c9n9{r6 r7} - b9n1{r7c9 r9c9} ==> r9c3 ≠ 1
biv-chain[4]: c5n9{r4 r6} - c5n6{r6 r9} - r9c3{n6 n8} - r4c3{n8 n3} ==> r4c5 ≠ 3
biv-chain[4]: r4c4{n7 n3} - r4c3{n3 n8} - r9c3{n8 n6} - c5n6{r9 r6} ==> r6c5 ≠ 7
z-chain[4]: r9c3{n8 n6} - c5n6{r9 r6} - c5n9{r6 r4} - r4n8{c5 .} ==> r5c3 ≠ 8
whip[4]: r2c8{n3 n4} - r8n4{c8 c2} - b1n4{r1c2 r1c1} - r1n3{c1 .} ==> r2c4 ≠ 3
biv-chain[5]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} - c6n8{r5 r2} ==> r2c6 ≠ 4
whip[1]: c6n4{r9 .} ==> r9c5 ≠ 4
biv-chain-rc[4]: r9c5{n7 n6} - r9c3{n6 n8} - r4c3{n8 n3} - r4c4{n3 n7} ==> r4c5 ≠ 7
z-chain[4]: r2c6{n7 n8} - r5c6{n8 n5} - c2n5{r5 r6} - c2n7{r6 .} ==> r2c1 ≠ 7
z-chain[5]: c6n8{r2 r5} - r4c5{n8 n9} - r4c1{n9 n7} - b5n7{r4c4 r6c6} - r2c6{n7 .} ==> r2c1 ≠ 8
naked-pairs-in-a-row: r2{c1 c8}{n3 n4} ==> r2c4 ≠ 4, r2c2 ≠ 4
finned-x-wing-in-rows: n4{r2 r8}{c8 c1} ==> r7c1 ≠ 4
stte
;;; same path upto RS1
biv-chain[5]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} - c6n8{r5 r2} ==> r2c6 ≠ 4
whip[1]: c6n4{r9 .} ==> r9c5 ≠ 4
z-chain[4]: r2c6{n7 n8} - r5c6{n8 n5} - c2n5{r5 r6} - c2n7{r6 .} ==> r2c1 ≠ 7
z-chain[5]: r5c4{n3 n4} - r5c5{n4 n8} - r3c5{n8 n4} - r3c9{n4 n3} - r6n3{c9 .} ==> r4c5 ≠ 3
z-chain[6]: r2n6{c4 c2} - r2n7{c2 c6} - r9n7{c6 c5} - c5n6{r9 r6} - c5n3{r6 r5} - c8n3{r5 .} ==> r2c4 ≠ 3
z-chain[8]: r2n6{c2 c4} - r2n7{c4 c6} - c6n8{r2 r5} - r5n5{c6 c2} - r5n1{c2 c3} - r7c3{n1 n6} - r7c6{n6 n4} - c1n4{r7 .} ==> r2c2 ≠ 4
z-chain[6]: c6n8{r2 r5} - r4n8{c5 c3} - c3n3{r4 r5} - r5c4{n3 n4} - r2n4{c4 c8} - r2n3{c8 .} ==> r2c1 ≠ 8
naked-pairs-in-a-row: r2{c1 c8}{n3 n4} ==> r2c4 ≠ 4
biv-chain[3]: r2n4{c1 c8} - r8c8{n4 n9} - b7n9{r8c2 r7c1} ==> r7c1 ≠ 4
hidden-single-in-a-row ==> r7c6 = 4
hidden-single-in-a-row ==> r7c3 = 6
whip[1]: b7n4{r9c2 .} ==> r1c2 ≠ 4
biv-chain[4]: r6n5{c2 c6} - r5c6{n5 n8} - r2n8{c6 c2} - r1c2{n8 n7} ==> r6c2 ≠ 7
whip[1]: c2n7{r2 .} ==> r1c1 ≠ 7
z-chain[4]: r4n8{c3 c5} - r4n9{c5 c1} - r7c1{n9 n1} - r9c3{n1 .} ==> r5c3 ≠ 8
z-chain[4]: c2n5{r5 r6} - c2n9{r6 r8} - r7c1{n9 n1} - r3n1{c1 .} ==> r5c2 ≠ 1
stte
denis_berthier wrote:
- Code: Select all
biv-chain[4]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} ==> r5c6 ≠ 4
z-chain[4]: c1n4{r2 r7} - b7n9{r7c1 r8c2} - r8c8{n9 n4} - b3n4{r2c8 .} ==> r3c2 ≠ 4
t-whip[4]: b7n9{r8c2 r7c1} - r6c1{n9 n7} - r4c1{n7 n8} - c3n8{r5 .} ==> r8c2 ≠ 8
denis_berthier wrote:It is clearly stated in PBCS that z-chains are the z-extension of bivalue-chains and that they are reversible.
They could be called z-biv-chains, but then some systematic opponents would whine that "biv" is incorrect because they are not really bivalue.
In chains, the target(s) is (are) linked to both ends. Not in whips or braids. I think the names are perfectly suggestive of this difference.
Already in HLS, I had defined nrczt-chains; I still called them chains because they also had this property.
denis_berthier wrote:nrczt6-chain {n9 n2}r6c1 - {n2 n6}r4c1 - {n6 n8}r5c1 - n9{r5c1 r4c3} - {n9 n7}r1c3 - {n7 n9}r2c1 ==> r8c1 <> n9
SpAce wrote:Writing them [z-chains] as (special cases of) biv-chains would make that more obvious, too.