Robert's puzzles 2020-09-26

Post puzzles for others to solve here.

Robert's puzzles 2020-09-26

Postby Mauriès Robert » Sat Sep 26, 2020 8:32 am

Hi all,
I propose you this puzzle. What is its level of difficulty ?
..9..2..6..5.1.9.2..2..9.7..2...14..6.......7..42...8..3.8..7..2.7.5.6..5..9..3..
puzzle: Show
Image
solution: Show
Image
Cordialy,
Robert
Mauriès Robert
 
Posts: 607
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2020-09-26

Postby SpAce » Sat Sep 26, 2020 11:01 am

Step 1. Double Kraken cell

Code: Select all
.----------------------.------------------.--------------.
|  3478     478    9   | 3457  3478   2   | 58   1   6   |
| *3478     4678   5   | 3467  1     d478 | 9   a34  2   |
| b1348    b1468   2   | 3456  348    9   | 58   7   34  |
:----------------------+------------------+--------------:
| c789      2      38  | 37    3789   1   | 4    6   5   |
|  6    abcd589-1  138 | 34    3489  d458 | 2    39  7   |
| c79    abc579    4   | 2     3679   567 | 1    8   39  |
:----------------------+------------------+--------------:
| b149      3      16  | 8     2      46  | 7    5   149 |
|  2      ab489    7   | 1     5      3   | 6   a49  489 |
|  5        148    168 | 9     467    467 | 3    2   148 |
'----------------------'------------------'--------------'

a:(3)r2c1 - (3=4)r2c8 - (4=9)r8c2 - r8c2 = (9-5)r6c2 = (5)r5c2
  ||
  ||        (1)r7c1 - r3c1 = (1)r3c2
  ||        ||
b:(4)r2c1 - (4)r7c1
  ||        ||
  ||        (9)r7c1 - r8c2 = (9-5)r6c2 = (5)r5c2
  ||
c:(7)r2c1 - r46c1 = (7-5)r6c2 = (5)r5c2
  ||
d:(8)r2c1 - r2c6 = (8-5)r5c6 = (5)r5c2

=> -1 r5c2

    10x10 TM: Show
    Code: Select all
     5r5c2 5r5c6
     . . . 8r5c6 8r2c6
     5r5c2 . . . . . . 5r6c2
     . . . . . . . . . 7r6c2 7r46c1
     9r5c2 . . . . . . 9r6c2 . . . . 9r8c2
     . . . . . . . . . . . . . . . . 9r8c8 4r8c8
     . . . . . . . . . . . . . . . . . . . 4r2c8 3r2c8
     . . . . . . 8r2c1 . . . 7r2c1 . . . . . . . 3r2c1 4r2c1
     . . . . . . . . . . . . . . . . 9r7c1 . . . . . . 4r7c1 1r7c1
     1r3c2 . . . . . . . . . . . . . . . . . . . . . . . . . 1r3c1
    ==============================================================
    -1r5c2

    g-braid(10): Show
    r5n5{c2 c6} - c6n8{r5 r2} - c2n5{r5 r6} - b4n7{r6c2 r46c1} - c2n9{r6 r8} - r8c8{n9 n4} - r2c8{n4 n3} - r2c1{n3 n4} - r7c1{n4 n1} - r3n1{c1 .} => -1 r5c2
Step 2. AIC (with nesting)

Code: Select all
.----------------.------------------.-------------.
|  3478  g78   9 |  345  F3478   2  | g58  1   6  |
|  3478   678  5 |  346   1     E78 |  9   34  2  |
| i1348  i168  2 | i3456  348    9  | h58  7   34 |
:----------------+------------------+-------------:
|  89     2    3 |  7     89     1  |  4   6   5  |
|  6      589  1 |  34    3489  E58 |  2   39  7  |
|  79   cD579  4 |  2     369   D56 |  1   8   39 |
:----------------+------------------+-------------:
| a9-1    3    6 |  8     2      4  |  7   5   19 |
|  2     b49   7 |  1     5      3  |  6   49  8  |
|  5      14   8 |  9     67     67 |  3   2   14 |
'----------------'------------------'-------------'

(9)r7c1 = r8c2 - r6c2 = [(75)r6c26 = (58-7)r52c6 = (7)r1c5] - (7=85)r1c27 - r3c7 = (561)r3c421 => -1 r7c1; stte

    as a Kraken cell: Show
    Code: Select all
    (5)r6c2 - r6c6 = (58-7)r52c6 = (785)r1c527 - r3c7 = (561)r3c421
    ||
    (7)r6c2 - (7=85)r1c27 - r3c7 = (561)r3c421
    ||
    (9)r6c2 - r8c2 = (9)r7c1

    => -1 r7c1

    10x10 TM: Show
    Code: Select all
     1r3c1 1r3c2
     . . . 6r3c2 6r3c4
     . . . . . . 5r3c4 5r3c7
     . . . . . . . . . 5r1c7 8r1c7
     . . . . . . . . . . . . 8r1c2 7r1c2
     . . . . . . . . . . . . . . . 7r1c5 7r2c6
     . . . . . . . . . . . . . . . . . . 8r2c6 8r5c6
     . . . . . . . . . . . . . . . . . . . . . 5r5c6 5r6c6
     . . . . . . . . . . . . . . . 7r6c2 . . . . . . 5r6c2 9r6c2
     9r7c1 . . . . . . . . . . . . . . . . . . . . . . . . 9r8c2
    ============================================================
    -1r7c1

    t-whip(10): Show
    r3n1{c1 c2} - r3n6{c2 c4} - r3n5{c4 c7} - r1c7{n5 n8} - r1c2{n8 n7} - b2n7{r1c5 r2c6} - c6n8{r2 r5} - c6n5{r5 r6} - r6c2{n5 n9} - b7n9{r8c2 .} => -1 r7c1
--
Edit. Cosmetic changes to the first kraken and matrix. Added the t-whip and g-braid notations.
Last edited by SpAce on Mon Sep 28, 2020 2:41 am, edited 1 time in total.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Robert's puzzles 2020-09-26

Postby Cenoman » Sat Sep 26, 2020 3:40 pm

Five steps: four AIc's and one kraken:
Code: Select all
 +----------------------+----------------------+------------------+
 |  3478   478    9     |  3457   3478   2     |  58   1    6     |
 |Ww347-8  4678   5     |  3467   1     c478   |  9   x34   2     |
 |  1348   1468   2     |  3456   348    9     |  58   7    34    |
 +----------------------+----------------------+------------------+
 |Xa789    2    Yb38    |  37     3789   1     |  4    6    5     |
 |  6     b1589 Yb138   |  34     3489  c458   |  2   A39   7     |
 |XB79    B579    4     |  2      3679  B567   |  1    8   B39    |
 +----------------------+----------------------+------------------+
 | z19-4   3     Y16    |  8      2    ZC46    |  7    5   y19-4  |
 |  2      489    7     |  1      5      3     |  6  xA49   489   |
 |  5      148    168   |  9      467    467   |  3    2    148   |
 +----------------------+----------------------+------------------+

1. (8)r4c1 = (8-135)b4p356 = (58)r25c6 => -8 r2c1
2. (4=93)r58c8 - (3=5796)r6c1269 - (6=4)r7c6 => -4 r7c9

3. Kraken cell (347)r2c1
(3)r2c1 - (3=49)r28c8 - r7c9 = (9)r7c1
(4)r2c1
(7)r2c1 - (7=98)r46c1 - (8=136)r457c3 - (6=4)r7c6
---------------------
=> -4 r7c1; 2 placements and basics

Code: Select all
 +----------------------+----------------------+------------------+
 |  3478   78     9     |  3457   3478   2     |  58   1    6     |
 |  347    678    5     |  3467   1      78    |  9    34   2     |
 |  1348   168    2     |  3456   348    9     |  58   7    34    |
 +----------------------+----------------------+------------------+
 | b789    2     b38    |  37     3789   1     |  4    6    5     |
 |  6      1589  b138   |  34     3489   58    |  2    39   7     |
 | b79     579    4     |  2      3679   567   |  1    8    39    |
 +----------------------+----------------------+------------------+
 | a19     3      6     |  8      2      4     |  7    5    19    |
 |  2      489    7     |  1      5      3     |  6    49   489   |
 |  5      148    8-1   |  9      67     67    |  3    2    148   |
 +----------------------+----------------------+------------------+

4. (1=9)r7c1 - (9=3781)b4p1367 => -1 r9c3; 5 placements and basics

Code: Select all
 +--------------------+---------------------+-----------------+
 |  3478  c78    9    |  345    3478   2    | c58   1    6    |
 | d347    678   5    | d346    1      78   |  9   d34   2    |
 |  1348   168   2    | a345-6  348    9    | b58   7    34   |
 +--------------------+---------------------+-----------------+
 |  89     2     3    |  7      89     1    |  4    6    5    |
 |  6      589   1    |  34     3489   58   |  2    39   7    |
 |  79     579   4    |  2      369    56   |  1    8    39   |
 +--------------------+---------------------+-----------------+
 |  19     3     6    |  8      2      4    |  7    5    19   |
 |  2      49    7    |  1      5      3    |  6    49   8    |
 |  5      14    8    |  9      67     67   |  3    2    14   |
 +--------------------+---------------------+-----------------+

5. (5)r3c4 = r3c7 - (5=87)r1c27 - (7=346)r2c148 => -6 r3c4; ste
Cenoman
Cenoman
 
Posts: 3002
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2020-09-26

Postby denis_berthier » Sat Sep 26, 2020 4:24 pm

Two solutions starting the same way:

- with whips and other chains, all of length ≤ 5:
Code: Select all
(solve "..9..2..6..5.1.9.2..2..9.7..2...14..6.......7..42...8..3.8..7..2.7.5.6..5..9..3..")
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = gB+SFin
***  Using CLIPS 6.32-r770
***********************************************************************************************
hidden-single-in-a-column ==> r8c4 = 1
hidden-single-in-a-block ==> r8c6 = 3
hidden-single-in-a-column ==> r5c7 = 2
hidden-single-in-a-column ==> r4c8 = 6
175 candidates, 942 csp-links and 942 links. Density = 6.19%
whip[1]: c3n6{r9 .} ==> r9c2 ≠ 6
whip[1]: c6n5{r6 .} ==> r5c4 ≠ 5, r4c4 ≠ 5
hidden-single-in-a-row ==> r4c9 = 5
naked-single ==> r6c7 = 1
hidden-single-in-a-block ==> r7c8 = 5
hidden-single-in-a-block ==> r9c8 = 2
hidden-single-in-a-block ==> r7c5 = 2
hidden-single-in-a-column ==> r1c8 = 1
whip[1]: c3n3{r5 .} ==> r6c1 ≠ 3, r4c1 ≠ 3
whip[1]: c7n8{r3 .} ==> r3c9 ≠ 8
whip[1]: c4n6{r3 .} ==> r3c5 ≠ 6, r2c6 ≠ 6
biv-chain[3]: r3c9{n4 n3} - b6n3{r6c9 r5c8} - r5c4{n3 n4} ==> r3c4 ≠ 4
biv-chain[3]: r4n9{c5 c1} - b7n9{r7c1 r8c2} - c8n9{r8 r5} ==> r5c5 ≠ 9
biv-chain[4]: r3c9{n4 n3} - r6n3{c9 c5} - b5n6{r6c5 r6c6} - r7c6{n6 n4} ==> r7c9 ≠ 4
biv-chain[4]: r3c9{n4 n3} - r6c9{n3 n9} - r7c9{n9 n1} - c1n1{r7 r3} ==> r3c1 ≠ 4
biv-chain[4]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} ==> r5c6 ≠ 4
z-chain[4]: c1n4{r2 r7} - b7n9{r7c1 r8c2} - r8c8{n9 n4} - b3n4{r2c8 .} ==> r3c2 ≠ 4
;;; RS1
t-whip[4]: b7n9{r8c2 r7c1} - r6c1{n9 n7} - r4c1{n7 n8} - c3n8{r5 .} ==> r8c2 ≠ 8
hidden-single-in-a-row ==> r8c9 = 8
x-wing-in-rows: n9{r5 r8}{c2 c8} ==> r6c2 ≠ 9
biv-chain[4]: r5n1{c3 c2} - r5n9{c2 c8} - c9n9{r6 r7} - b9n1{r7c9 r9c9} ==> r9c3 ≠ 1
biv-chain[4]: c5n9{r4 r6} - c5n6{r6 r9} - r9c3{n6 n8} - r4c3{n8 n3} ==> r4c5 ≠ 3
biv-chain[4]: r4c4{n7 n3} - r4c3{n3 n8} - r9c3{n8 n6} - c5n6{r9 r6} ==> r6c5 ≠ 7
z-chain[4]: r9c3{n8 n6} - c5n6{r9 r6} - c5n9{r6 r4} - r4n8{c5 .} ==> r5c3 ≠ 8
whip[4]: r2c8{n3 n4} - r8n4{c8 c2} - b1n4{r1c2 r1c1} - r1n3{c1 .} ==> r2c4 ≠ 3
biv-chain[5]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} - c6n8{r5 r2} ==> r2c6 ≠ 4
whip[1]: c6n4{r9 .} ==> r9c5 ≠ 4
biv-chain-rc[4]: r9c5{n7 n6} - r9c3{n6 n8} - r4c3{n8 n3} - r4c4{n3 n7} ==> r4c5 ≠ 7
z-chain[4]: r2c6{n7 n8} - r5c6{n8 n5} - c2n5{r5 r6} - c2n7{r6 .} ==> r2c1 ≠ 7
z-chain[5]: c6n8{r2 r5} - r4c5{n8 n9} - r4c1{n9 n7} - b5n7{r4c4 r6c6} - r2c6{n7 .} ==> r2c1 ≠ 8
naked-pairs-in-a-row: r2{c1 c8}{n3 n4} ==> r2c4 ≠ 4, r2c2 ≠ 4
finned-x-wing-in-rows: n4{r2 r8}{c8 c1} ==> r7c1 ≠ 4
stte


with only reversible, but longer, chains:
Code: Select all
;;; same path upto RS1
biv-chain[5]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} - c6n8{r5 r2} ==> r2c6 ≠ 4
whip[1]: c6n4{r9 .} ==> r9c5 ≠ 4
z-chain[4]: r2c6{n7 n8} - r5c6{n8 n5} - c2n5{r5 r6} - c2n7{r6 .} ==> r2c1 ≠ 7
z-chain[5]: r5c4{n3 n4} - r5c5{n4 n8} - r3c5{n8 n4} - r3c9{n4 n3} - r6n3{c9 .} ==> r4c5 ≠ 3
z-chain[6]: r2n6{c4 c2} - r2n7{c2 c6} - r9n7{c6 c5} - c5n6{r9 r6} - c5n3{r6 r5} - c8n3{r5 .} ==> r2c4 ≠ 3
z-chain[8]: r2n6{c2 c4} - r2n7{c4 c6} - c6n8{r2 r5} - r5n5{c6 c2} - r5n1{c2 c3} - r7c3{n1 n6} - r7c6{n6 n4} - c1n4{r7 .} ==> r2c2 ≠ 4
z-chain[6]: c6n8{r2 r5} - r4n8{c5 c3} - c3n3{r4 r5} - r5c4{n3 n4} - r2n4{c4 c8} - r2n3{c8 .} ==> r2c1 ≠ 8
naked-pairs-in-a-row: r2{c1 c8}{n3 n4} ==> r2c4 ≠ 4
biv-chain[3]: r2n4{c1 c8} - r8c8{n4 n9} - b7n9{r8c2 r7c1} ==> r7c1 ≠ 4
hidden-single-in-a-row ==> r7c6 = 4
hidden-single-in-a-row ==> r7c3 = 6
whip[1]: b7n4{r9c2 .} ==> r1c2 ≠ 4
biv-chain[4]: r6n5{c2 c6} - r5c6{n5 n8} - r2n8{c6 c2} - r1c2{n8 n7} ==> r6c2 ≠ 7
whip[1]: c2n7{r2 .} ==> r1c1 ≠ 7
z-chain[4]: r4n8{c3 c5} - r4n9{c5 c1} - r7c1{n9 n1} - r9c3{n1 .} ==> r5c3 ≠ 8
z-chain[4]: c2n5{r5 r6} - c2n9{r6 r8} - r7c1{n9 n1} - r3n1{c1 .} ==> r5c2 ≠ 1
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2020-09-26

Postby SpAce » Sat Sep 26, 2020 10:49 pm

I don't expect an answer, and it doesn't matter a whole lot anyway, but something I've been wondering about for a while...

denis_berthier wrote:
Code: Select all
biv-chain[4]: r7c6{n4 n6} - r7c3{n6 n1} - b4n1{r5c3 r5c2} - r5n5{c2 c6} ==> r5c6 ≠ 4

z-chain[4]: c1n4{r2 r7} - b7n9{r7c1 r8c2} - r8c8{n9 n4} - b3n4{r2c8 .} ==> r3c2 ≠ 4

t-whip[4]: b7n9{r8c2 r7c1} - r6c1{n9 n7} - r4c1{n7 n8} - c3n8{r5 .} ==> r8c2 ≠ 8

Why is it named z-chain instead of z-whip? Since z-chains are written as contradiction chains they resemble whips much more than biv-chains. It's obvious just by looking at the three examples above. Is there a logical reason (beyond "inventor's prerogative") for such an unintuitive naming (or writing)?

That said, I'd rather keep the name and change the notation of z-chains to make them biv-chains with the z-extension. That's what the name implies. There's no need for the ugly contradiction anyway. (Then again, there's no need for that with whips or braids either. They could be written with actual end points, too.)

The biv-chain family might make more sense for z-chains because, unlike whips, they're confluent (as far as I understand the term). Deleting any of its candidates would result in a simpler z-chain or a biv-chain (or eliminating the target), though possibly with a different starting point -- but no braid (which is the fallback pattern for maimed whips). Like biv-chains, but unlike whips, they're also reversible even by your definition. Writing them as (special cases of) biv-chains would make that more obvious, too.

Either way, the current name and notation seem mismatched.
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Robert's puzzles 2020-09-26

Postby denis_berthier » Sun Sep 27, 2020 4:02 am

It is clearly stated in PBCS that z-chains are the z-extension of bivalue-chains and that they are reversible. They could be called z-biv-chains, but then some systematic opponents would whine that "biv" is incorrect because they are not really bivalue.

In chains, the target(s) is (are) linked to both ends. Not in whips or braids. I think the names are perfectly suggestive of this difference.

Already in HLS, I had defined nrczt-chains; I still called them chains because they also had this property. I moved the emphasis to whips when I found that raising this condition led to a slightly more general pattern (and that it was essential for the T&E vs braids theorem).

Definitions are not arbitrary: if they allow no proof of anything, they are useless.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Robert's puzzles 2020-09-26

Postby SpAce » Sun Sep 27, 2020 5:55 pm

denis_berthier wrote:It is clearly stated in PBCS that z-chains are the z-extension of bivalue-chains and that they are reversible.

So why are they written like whips? That's my question, and I don't think you answered it at all. If the above is the intended interpretation then z-chains shouldn't be written as contradiction chains -- they should be written with actual end-points like biv-chains (as the old nrcz-chains apparently were).

They could be called z-biv-chains, but then some systematic opponents would whine that "biv" is incorrect because they are not really bivalue.

One doesn't have to be a "systematic opponent" to make that judgment call. 'z-biv-chain' would be a poor naming option regardless of how the chain is written, but especially in the current form. As currently written, 'z-whip' would be best. If written as a non-contradiction chain (as I would recommend), then the current name 'z-chain' would do.

In chains, the target(s) is (are) linked to both ends. Not in whips or braids. I think the names are perfectly suggestive of this difference.

I would like to agree, hence my whole question!!! The target of a z-chain is NOT linked to both ends, because one end is a contradiction -- just like in whips and braids. Thus not a chain by that definition. What am I missing?

Already in HLS, I had defined nrczt-chains; I still called them chains because they also had this property.

They indeed seem to be 'chains' by having actual nodes at both ends, at least based on these examples:

denis_berthier wrote:nrczt6-chain {n9 n2}r6c1 - {n2 n6}r4c1 - {n6 n8}r5c1 - n9{r5c1 r4c3} - {n9 n7}r1c3 - {n7 n9}r2c1 ==> r8c1 <> n9

No dot at the end -- thus a 'chain'. Since we seem to agree on that, I don't understand why you muddy the definition by keeping the 'chain' in z-chains while writing them like whips. You have not answered that question at all. You've instead helped argue my point!

slightly off-topic: Show
I moved the emphasis to whips when I found that raising this condition led to a slightly more general pattern

More general in what way? I can see that you've made this assertion in your book:

PBCS page 104 wrote:Whips are also more general, because they are able to catch more contradictions than chains.

Can you show an actual example of such a situation? I have a hard time imagining one. As I said in the previous post, and as your own nrczt-examples demonstrate, I'm pretty sure that both whips and braids could just as well be written with actual end-points.

(and that it was essential for the T&E vs braids theorem)

I'm also pretty sure the 'T&E vs braids theorem' would work just as well if braids were written without the contradiction. The one-to-one mapping wouldn't be as obvious, perhaps, but it would still be there. That can be trivially seen if the patterns are observed in language-agnostic matrices which support both interpretations without any changes.

Any pattern that can be written as a triangular matrix (TM) can be written as a braid (and vice versa), because TMs only use AND-branching when read from top to bottom. TMs with less complexity can also be written as (zt-)whips, t-whips, z-chains, or biv-chains, and the differences are easily seen in the matrix form. (Of course that includes the g- and S-variants, too.)

PS. I made a mistake in the previous post:

SpAce wrote:Writing them [z-chains] as (special cases of) biv-chains would make that more obvious, too.

Obviously z-chains would not be special cases of biv-chains even in that case. The other way around would be true, since a biv-chain would be a restricted subtype of the more generic z-chain. As currently written they're not related, as z-chains look like special cases of whips.

--
Added 1. The difference between a 'whip' and a 'chain' as I see it, using my second move as an example (t-whip[10] vs "t-chain"[10]):

    r3n1{c1 c2} - r3n6{c2 c4} - r3n5{c4 c7} - r1c7{n5 n8} - r1c2{n8 n7} - b2n7{r1c5 r2c6} - c6n8{r2 r5} - c6n5{r5 r6} - r6c2{n5 n9} - b7n9{r8c2 .} => -1 r7c1
    r3n1{c1 c2} - r3n6{c2 c4} - r3n5{c4 c7} - r1c7{n5 n8} - r1c2{n8 n7} - b2n7{r1c5 r2c6} - c6n8{r2 r5} - c6n5{r5 r6} - r6c2{n5 n9} - b7n9{r8c2 r7c1} => -1 r7c1


    (The mandatory chain prefixes omitted to save space and to highlight the difference.)
Obviously the only difference is that the whip-form has a contradiction at the end. My main question repeated: why does a z-chain have the whip-form despite being called a 'chain'? My secondary question: why is the whip-form used for almost everything in your system, including z-chains, even though the cleaner and more intuitive chain-form could replace it in most cases?

a bonus braid question: Show
How would you write my first move as a braid? I'm sure it can be done, but I don't know the exact rules of writing them, especially with group and subset nodes. Added 2. Here's how I think it could be written as a g-braid[10]:

    r5n5{c2 c6} - c6n8{r5 r2} - c2n5{r5 r6} - b4n7{r6c2 r46c1} - c2n9{r6 r8} - r8c8{n9 n4} - r2c8{n4 n3} - r2c1{n3 n4} - r7c1{n4 n1} - r3n1{c1 .} => -1 r5c2
Is that a valid braid (if the prefix is added)? If so, then I have to ask the same question as of the z-chain and the whip. Why write it as a contradiction when you could do this just as well:

    r5n5{c2 c6} - c6n8{r5 r2} - c2n5{r5 r6} - b4n7{r6c2 r46c1} - c2n9{r6 r8} - r8c8{n9 n4} - r2c8{n4 n3} - r2c1{n3 n4} - r7c1{n4 n1} - r3n1{c1 c2} => -1 r5c2
? Beats me.

(As a side note, can you honestly say you think the braid form is easy to follow, with those quantum-jumping links and omitted tz-candidates? Can you imagine what the logic actually looks like in the grid just by looking at that braid?)
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017


Return to Puzzles