Robert's puzzles 2020-04-08

Post puzzles for others to solve here.

Robert's puzzles 2020-04-08

Postby Mauriès Robert » Wed Apr 08, 2020 9:17 am

Hi all,
Here's an easy puzzle for me. What about you?

1....6..5..7...1...9.4.1.8.3....5...2..9..7...8..1.......2....6..4..9...5..8..3..

puzzle: Show
Image

Sincerely
Robert
Last edited by Mauriès Robert on Mon Apr 13, 2020 10:24 am, edited 2 times in total.
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2020-04-08

Postby Cenoman » Wed Apr 08, 2020 10:15 pm

In one step:
Code: Select all
 +------------------+----------------------+-----------------------+
 |  1   E234* E38*  | b37   E289*   6      | D49     3479   5      |
 |  48  E24-3* 7    |  5     289    28     |  1      6      349    |
 |  6    9     5    |  4    c37     1      |  2      8      37     |
 +------------------+----------------------+-----------------------+
 |  3    47    1    | B67    2478   5      | C4689   249    2489   |
 |  2    5     6    |  9     348    348    |  7      134    1348   |
 |  47   8     9    |Aa367   1      2347   |  456    2345   234    |
 +------------------+----------------------+-----------------------+
 |  9    137   38   |  2     5      347    |  48     147    6      |
 |  78  e36    4    |  1    d36     9      |  58     257    278    |
 |  5    167   2    |  8     467    47     |  3      1479   1479   |
 +------------------+----------------------+-----------------------+

Kraken cell (367)r6c4
(3)r6c4 - r1c4 = r3c5 - r8c5 = (3)r8c2
(6)r6c4 - r4c4 = (6-9)r4c7 = r1c7 - r1c5 = H-wing[(2)r2c2 = r1c2 - (2=8)r1c5 - (8=3)r1c3]
(7)r6c4-(7=4)r6c1- (4=83)b1p34
=> -3 r2c2; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2020-04-08

Postby eleven » Thu Apr 09, 2020 8:33 am

Nothing interesting found here.
Sorry, for whatever reason i copied the wrong grid with the 2r1c2 resolved (thanks to Robert).
See the post below.

Code: Select all
 *-----------------------------------------------------------------*
 |  1    2     38   | b37    89     6      |ea49    a3479   5      |
 | b48   34    7    |  5    b289   b28     |  1      6    ea39     |
 |  6    9     5    |  4     37     1      |  2      8      7-3    |
 |------------------+----------------------+-----------------------|
 |  3    47    1    |  67    2478   5      |  4689   249    2489   |
 |  2    5     6    |  9     348    348    |  7      134    1348   |
 | c47   8     9    | c367   1      2347   | d456    2345   234    |
 |------------------+----------------------+-----------------------|
 |  9    137   38   |  2     5      347    |  48     147    6      |
 | c78   36    4    |  1     36     9      | d58     257    278    |
 |  5    167   2    |  8     467    47     |  3      1479   1479   |
 *-----------------------------------------------------------------*

(3=479)b3p126 - (7|9=2834)r1c4,r2c156 - (3|4=786)r6c14,r8c1 - (6|8=54)r68c6 - (4=93)b3p16 => -3r2c9, stte
Last edited by eleven on Mon Apr 13, 2020 8:58 pm, edited 1 time in total.
eleven
 
Posts: 3152
Joined: 10 February 2008

Re: Robert's puzzles 2020-04-08

Postby Mauriès Robert » Mon Apr 13, 2020 5:34 pm

Hi all,
I like Cenoman's resolution with a Kraken.
Here's the resolution I followed for this puzzle.
First, I use the two beautiful chains on the 3 that also correspond to a swordfish.
In terms of TDP, I do this job with two conjugated tracks on the pair of 3r8 (see puzzle1).
P(3r8c2): 3r8c2->(3r1c3->3r3c5)->3r2c9->....
P(3r8c5) : 3r8c5->(3r1c4->3r2c2 and 3r3c9)->3r2c2->3r7c3-> ....
=> -3r1c2, -3r1c8, -3r5c5, -3r5c9, -3r6c9, -3r7c2

puzzle1: Show
Image

The resolution continues with two eliminations using short anti-tracks: (see puzzle2,3)
P'(2r1c2) : -2r1c2->2r1c5->2r6c6->4r6c9->4r4c2 => -4r1c2 =>r1c2=2
P'(7r6c1) : -7r6c1->4r6c1->8r2c1->3r1c3->7r1c4 => -7r6c4

puzzle2,3: Show
Image
Image

Finally, we finish the resolution with two conjugated tracks starting from the pair 36r6c4 which has just appeared (see puzzle4) :
P(3r6c4) : 3r6c4->3r3c5
P(6r6c4) : 6r6c4->6r4c7->9r1c7->8r1c5->3r1c3->3r3c5
=> r3c5=3, stte.

puzzle4: Show
Image

Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2020-04-08

Postby eleven » Mon Apr 13, 2020 9:03 pm

With the right grid my chain needs an almost wxyz-wing to finish:
Code: Select all
 *-----------------------------------------------------------------*
 |  1   #234  #38   | b37   #28+9   6      |ea49    a3479   5      |
 |b#48  f234   7    |  5     289    28     |  1      6    ga349    |
 |  6    9     5    |  4     37     1      |  2      8      37     |
 |------------------+----------------------+-----------------------|
 |  3    47    1    |  67    2478   5      |  4689   249    2489   |
 |  2    5     6    |  9     348    348    |  7      134    1348   |
 | c47   8     9    | c367   1      2347   | d456    2345   234    |
 |------------------+----------------------+-----------------------|
 |  9    137   38   |  2     5      347    |  48     147    6      |
 | c78   36    4    |  1     36     9      | d58     257    278    |
 |  5    167   2    |  8     467    47     |  3      1479   1479   |
 *-----------------------------------------------------------------*

Almost wxyz-wing 2348 in the #-marked cells r1c235,r2c1 (only 8 can be twice) -> 3r1c23

(3=479)b3p126 - (7|9=2834)r1c4,r2c156 - (3|4=786)r6c14,r8c1 - (6|8=54)r68c6 - (4=9)r1c7 =wxyz= 3r1c23 - r2c2 = r2c9 => -3r3c9, stte

But then it is better to write a Kraken very similar to Cenoman's:
Code: Select all
 *-----------------------------------------------------------------*
 |  1   #234 b#38   |  7-3  #28+9   6      | c49     3479   5      |
 |b#48   234   7    |  5     289    28     |  1      6      349    |
 |  6    9     5    |  4     37     1      |  2      8      37     |
 |------------------+----------------------+-----------------------|
 |  3    47    1    |  67    2478   5      |  4689   249    2489   |
 |  2    5     6    |  9     348    348    |  7      134    1348   |
 | a47   8     9    | *367   1      2347   | c456    2345   234    |
 |------------------+----------------------+-----------------------|
 |  9    137   38   |  2     5      347    | c48     147    6      |
 |  78   36    4    |  1     36     9      | c58     257    278    |
 |  5    167   2    |  8     467    47     |  3      1479   1479   |
 *-----------------------------------------------------------------*

Kraken 367r6c4:
6r6c4 - (6=4589)r6781c7 - 9r1c5 =wxyz= 3r1c12
7r6c4 - (7=4)r6c1 - (4=83)b1p43
3r6c3
=> -3r1c4, stte
eleven
 
Posts: 3152
Joined: 10 February 2008

Re: Robert's puzzles 2020-04-08

Postby denis_berthier » Tue Apr 14, 2020 11:27 am

No complicated pattern, no extra-long chains.
Only Subsets, bivalue-chains of maximum length 4 and t-whips of maximum length 3.
As a reminder, t-whips are a special case of whips, where the pattern doesn't depend on the target.

Hidden Text: Show
Code: Select all
naked-pairs-in-a-block: b2{r1c4 r3c5}{n3 n7} ==> r2c6 ≠ 3, r2c5 ≠ 3, r1c5 ≠ 7, r1c5 ≠ 3
hidden-pairs-in-a-row: r8{n3 n6}{c2 c5} ==> r8c5 ≠ 7, r8c5 ≠ 5, r8c2 ≠ 7
hidden-single-in-a-block ==> r7c5 = 5
finned-x-wing-in-columns: n3{c4 c8}{r1 r6} ==> r6c9 ≠ 3
biv-chain[2]: r8n3{c2 c5} - b2n3{r3c5 r1c4} ==> r1c2 ≠ 3
swordfish-in-rows: n3{r2 r3 r8}{c2 c9 c5} ==> r7c2 ≠ 3, r5c9 ≠ 3, r5c5 ≠ 3
whip[1]: b6n3{r6c8 .} ==> r1c8 ≠ 3
biv-chain[3]: r2c1{n4 n8} - r2c6{n8 n2} - b1n2{r2c2 r1c2} ==> r1c2 ≠ 4
naked-single ==> r1c2 = 2
whip[1]: r1n4{c8 .} ==> r2c9 ≠ 4
biv-chain[3]: c6n2{r6 r2} - c6n8{r2 r5} - r5c5{n8 n4} ==> r6c6 ≠ 4
biv-chain[3]: b4n4{r4c2 r6c1} - r6c9{n4 n2} - b5n2{r6c6 r4c5} ==> r4c5 ≠ 4
whip[1]: b5n4{r5c6 .} ==> r5c8 ≠ 4, r5c9 ≠ 4
biv-chain[3]: c8n5{r6 r8} - b9n2{r8c8 r8c9} - r6c9{n2 n4} ==> r6c8 ≠ 4
biv-chain[4]: r1c4{n7 n3} - c3n3{r1 r7} - b7n8{r7c3 r8c1} - c1n7{r8 r6} ==> r6c4 ≠ 7
t-whip[3]: r8n7{c9 c1} - r6n7{c1 c6} - r7n7{c6 .} ==> r9c8 ≠ 7
t-whip[3]: r8n7{c9 c1} - r6n7{c1 c6} - r7n7{c6 .} ==> r9c9 ≠ 7
biv-chain[4]: c4n7{r4 r1} - r1n3{c4 c3} - r2c2{n3 n4} - r4c2{n4 n7} ==> r4c5 ≠ 7
naked-triplets-in-a-column: c5{r1 r2 r4}{n8 n9 n2} ==> r5c5 ≠ 8
naked-single ==> r5c5 = 4
biv-chain[3]: c1n7{r8 r6} - r4n7{c2 c4} - r1n7{c4 c8} ==> r8c8 ≠ 7
biv-chain[3]: r8n7{c9 c1} - r6c1{n7 n4} - r6c9{n4 n2} ==> r8c9 ≠ 2
singles ==> r8c8 = 2, r8c7 = 5, r6c8 = 5, r5c8 = 3, r5c6 = 8, r2c6 = 2, r4c5 = 2, r5c9 = 1, r6c9 = 2
biv-chain[3]: r4c2{n7 n4} - c9n4{r4 r9} - r9c6{n4 n7} ==> r9c2 ≠ 7
whip[1]: r9n7{c6 .} ==> r7c6 ≠ 7
hidden-pairs-in-a-row: r7{n1 n7}{c2 c8} ==> r7c8 ≠ 4
biv-chain[3]: c9n4{r4 r9} - r7c7{n4 n8} - b6n8{r4c7 r4c9} ==> r4c9 ≠ 9
biv-chain[3]: r4n9{c7 c8} - r9n9{c8 c9} - c9n4{r9 r4} ==> r4c7 ≠ 4
biv-chain[3]: r1c7{n4 n9} - c9n9{r2 r9} - c9n4{r9 r4} ==> r6c7 ≠ 4
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles